Hall's transformation via quantum stochastic calculus
Cohen, Paula ; Hudson, Robin ; Parthasarathy, K. ; Pulmannová, Sylvia
Banach Center Publications, Tome 43 (1998), p. 147-155 / Harvested from The Polish Digital Mathematics Library

It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make use of quantum stochastic calculus, in which the circumambient space is the complexification of the Lie algebra equipped with the ad-invariant inner product.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208833
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p147bwm,
     author = {Cohen, Paula and Hudson, Robin and Parthasarathy, K. and Pulmannov\'a, Sylvia},
     title = {Hall's transformation via quantum stochastic calculus},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {147-155},
     zbl = {0943.46040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p147bwm}
}
Cohen, Paula; Hudson, Robin; Parthasarathy, K.; Pulmannová, Sylvia. Hall's transformation via quantum stochastic calculus. Banach Center Publications, Tome 43 (1998) pp. 147-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p147bwm/

[000] [Barg] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Commun. Pure Appl. Math. 24 (1961) 187-214.

[001] [ChPr] V. Chari and A. Pressley, Quantum Groups, Cambridge 1994. | Zbl 0839.17009

[002] [Driv] B. K. Driver, On the Kakutani-Ito-Segal-Gross and the Segal-Bargmann-Hall Isomorphisms, J. Funct. Anal. 133 (1995), 69-128. | Zbl 0846.43001

[003] [DrGr] B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, in: New Trends in Stochastic Analysis, ed. K. D. Elworthy et al., World Scientific 1997.

[004] [Eyre] T. M. W. Eyre, Chaotic expansions of elements of the universal enveloping superalgebra associated with a 2-graded quantum stochastic calculus, preprint, to appear in Commun. Math. Phys.

[005] [EyHu] T. M. W. Eyre and R. L. Hudson, Generalized Boson Fermion equivalence and representations of Lie superalgebras in quantum stochastic calculus, Commun. Math. Phys. 186 (1997) 87-94. | Zbl 0882.60097

[006] [Gros] L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. Funct. Anal. 112 (1993), 373-441. | Zbl 0774.60059

[007] [GrMa] L. Gross and P. Malliavin, Hall's transformation and the Segal-Bargmann map, in: Ito's stochastic calculus and probability theory, ed. M. Fukushima et al., Springer 1996.

[008] [Hall] B. Hall, The Segal-Bargmann 'coherent state' transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103-151. | Zbl 0838.22004

[009] [Huds] R. L. Hudson, Translation-invariant quantizations and algebraic structures on phase space, Rep. Math. Phys. 10 (1976), 9-20. | Zbl 0362.46050

[010] [HuPa] R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301-322. | Zbl 0546.60058

[011] [HuPa2] R. L. Hudson and K. R. Parthasarathy, Unification of Boson and Fermion quantum stochastic calculus, Commun. Math. Phys. 104 (1986) 457-470. | Zbl 0604.60063

[012] [HuPu] R. L. Hudson and S. Pulmannová, Chaotic expansions of elements of the universal enveloping algebra of a Lie algebra associated with a quantum stochastic calculus, preprint, to appear in Proc. London Math. Soc.

[013] [Sega] I. E. Segal, Tensor algebras over Hilbert spaces II, Ann. Math. (2) 63 (1956), 106-134.