Quantum stochastic processes arising from the strong resolvent limits of the Schrödinger evolution in Fock space
Chebotarev, Alexander ; Victorov, Dmitry
Banach Center Publications, Tome 43 (1998), p. 119-133 / Harvested from The Polish Digital Mathematics Library

By using F. A. Berezin's canonical transformation method [5], we derive a nonadapted quantum stochastic differential equation (QSDE) as an equation for the strong limit of the family of unitary groups satisfying the Schrödinger equation with singularly degenerating Hamiltonians in Fock space. Stochastic differentials of QSDE generate a nonadapted associative Ito multiplication table, and the coefficients of these differentials satisfy the formal unitarity conditions of the Hudson-Parthasarathy type [10].

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208831
@article{bwmeta1.element.bwnjournal-article-bcpv43i1p119bwm,
     author = {Chebotarev, Alexander and Victorov, Dmitry},
     title = {Quantum stochastic processes arising from the strong resolvent limits of the Schr\"odinger evolution in Fock space},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {119-133},
     zbl = {0939.47061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p119bwm}
}
Chebotarev, Alexander; Victorov, Dmitry. Quantum stochastic processes arising from the strong resolvent limits of the Schrödinger evolution in Fock space. Banach Center Publications, Tome 43 (1998) pp. 119-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv43i1p119bwm/

[000] [1] L. Accardi, Y.-G. Lu and I. Volovich, Non-linear Extensions of Classical and Quantum StochastCalculus and Essentially Infinite Dimensional Analysis, V. Volterra Center, Università di Roma Tor Vergata, Preprint No 268, 1996.

[001] [2] S. Albeverio, F. Gesztesy and R. Hoegh-Krohn, Solvable models in Quantum mechanics, Springer-Verlag, New-York, Berlin, London, 1988. | Zbl 0679.46057

[002] [3] S. Albeverio, W. Karwowski and V. D. Koshmanenko, Square powers of singularly perturbed operators, Math. Nachr., Vol. 173, 1995, 5-24. | Zbl 0826.47009

[003] [4] V. P. Belavkin and P. Staszewski, Nondemolition observation of a free quantum particle, Phys. Rev. A, Vol. 45, 1992, 1347-1356.

[004] [5] F. A. Berezin, The Method of Second Quantization, Academic Press, New-York, 1996. | Zbl 0956.83531

[005] [6] A. M. Chebotarev, Quantum stochastic differential equation as a strong resolvent limit of the Schrödinger evolution, in: IV Simposio de Probabilidad y Procesos Estochasticos, Gunajuato, Mexico, 1996, Societad Mat. Mexicana, 1996, 71-89. | Zbl 0924.60089

[006] [7] A. M. Chebotarev, Symmetric form of the Hudson-Parthasarathy equation, Mathematical Notes, Vol. 60, N5, 1996, 544-561. | Zbl 0904.60050

[007] [8] A. M. Chebotarev, Quantum stochastic differential equation is unitarily equivalent to a boundary value problem for the Schrödinger equation, Mathematical Notes, Vol. 61, N4, 1997, 510-519. | Zbl 0919.60093

[008] [9] C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: quantum statistical differential equations and the master equation, Phys. Rev. A, Vl. 31, 1985, 3761-3774.

[009] [10] R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolutions, Commun. Math. Phys., Vol. 93, N3, 1984, 301-323. | Zbl 0546.60058

[010] [11] Ka T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[011] [12], Naukova dumka, Kiev, 1993.

[012] [13] P. A. Meyer, Quantum probability for probabilists, Lecture Notes in Math., vol. 1338, 1993. | Zbl 0773.60098

[013] [14] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Birkhäuser, Basel, 1992. | Zbl 0751.60046

[014] [15] P. Zoller and C. W. Gardiner, Quantum Noise in Quantum Optics: the Stochastic Schödinger Equation, To appear in: Lecture Notes for the Les Houches Summer School LXIII on Quantum Fluctuations in July 1995, Edited by E. Giacobino and S. Reynaud, Elsevier Science Publishers B.V., 1997.