We study universal properties of random knotting by making an extensive use of isotopy invariants of knots. We define knotting probability () by the probability of an N-noded random polygon being topologically equivalent to a given knot K. The question is the following: for a given model of random polygon how the knotting probability changes with respect to the number N of polygonal nodes? Through numerical simulation we see that the knotting probability can be expressed by a simple function of N. From the result we propose a universal exponent of , which may be a new numerical invariant of knots.
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p77bwm, author = {Deguchi, Tetsuo and Tsurusaki, Kyoichi}, title = {Numerical application of knot invariants and universality of random knotting}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {77-85}, zbl = {0901.57013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p77bwm} }
Deguchi, Tetsuo; Tsurusaki, Kyoichi. Numerical application of knot invariants and universality of random knotting. Banach Center Publications, Tome 43 (1998) pp. 77-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p77bwm/
[000] [1] D. Bar-Natan, Topology 34 (1995) 423-472.
[001] [2] J. S. Birman and X. S. Lin, Invent. Math. 111 (1993), 225-270.
[002] [3] Y. D. Chen, J. Chem. Phys. 75 (1981), 2447-2453.
[003] [4] F. B. Dean, A. Stasiak, T. Koller and N. R. Cozzarelli, J. Biol. Chem. 260 (1985), 4795-4983.
[004] [5] T. Deguchi and K. Tsurusaki, Phys. Lett. A 174 (1993), 29-37.
[005] [6] T. Deguchi and K. Tsurusaki, J. Phys. Soc. Jpn. 62 (1993), 1411-1414.
[006] [7] T. Deguchi and K. Tsurusaki, J. Knot Theory and Its Ramifications 3(1994), 321-353.
[007] [8] T. Deguchi and K. Tsurusaki, A Universality of Random Knotting, preprint 1995.
[008] [9] M. Delbrück, in Mathematical Problems in the Biological Sciences, ed. R.E. Bellman, Proc. Symp. Appl. Math. 14 (1962) 55-63.
[009] [10] J. des Cloizeaux and M. L. Mehta, J. Phys. (Paris) 40 (1979), 665-670.
[010] [11] Y. Diao, N. Pippenger and D. W. Sumners, J. Knot Theory and Its Ramifications 3 (1994), 419-429.
[011] [12] S. F. Edwards, J. Phys. A1 (1968) 15-28.
[012] [13] H. L. Frisch and E. Wasserman, C J. Amer. Chem. Soc. 83 (1961), 3789-3794.
[013] [14] F. Jaeger, D. L. Vertigan and D. J. A. Welsh, Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53.
[014] [15] E. J. Janse van Rensburg and S. G. Whittington, J. Phys. A: Math. Gen. 23 (1990), 3573-3590.
[015] [16] K. Koniaris and M. Muthukumar, Phys. Rev. Lett. 66 (1991), 2211-2214.
[016] [17] J. P. J. Michels and F. W. Wiegel, Phys. Lett. 90A (1982), 381-384.
[017] [18] Random Knotting and Linking, eds. K. C. Millett and D. W. Sumners, World Scientific, Singapore, 1994.
[018] [19] M. Polyak and O. Viro, Intern. Math. Res. Notices, (1994), 445-453.
[019] [20] T. M. Przytycka and J. H. Przytycki, in Graph Structure Theory, eds. N. Robertson and P. Seymour, Contemp. math. AMS 147 (1993), 63-108.
[020] [21] V. V. Rybenkov, N. R. Cozzarelli and A. V. Vologodskii, Proc. Natl. Acad. Sci. USA 90 (1993), 5307-5311.
[021] [22] S. Y. Shaw and J. C. Wang, Science 260 (1993), 533-536.
[022] [23] K. Shishido, N. Komiyama and S. Ikawa, J. Mol, Biol. 195 (1987), 215-218.
[023] [24] D. W. Sumners and S. G. Whittington, J. Phys. A : Math. Gen. 21 (1988), 1689-1694.
[024] [25] N. Pippenger, Discrete Applied Math. 25 (1989), 273-278.
[025] [26] K. Tsurusaki, Thesis: Statistical Study of Random Knotting, University of Tokyo, 1995.
[026] [27] K. Tsurusaki and T. Deguchi, J. Phys. Soc. Jpn. 64 (1995), 1506-1518.
[027] [28] A. V. Vologodskii, A. V. Lukashin, M. D. Frank-Kamenetskii and V. V. Anshele- vich, Sov. Phys. JETP 39 (1974), 1059-1063.