Three results are shown which demonstrate how Vassiliev invariants behave like polynomials.
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p457bwm, author = {Willerton, Simon}, title = {Vassiliev invariants as polynomials}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {457-463}, zbl = {0903.57005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p457bwm} }
Willerton, Simon. Vassiliev invariants as polynomials. Banach Center Publications, Tome 43 (1998) pp. 457-463. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p457bwm/
[000] [1] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) no. 2, 423-472. | Zbl 0898.57001
[001] [2] D. Bar-Natan, Polynomial invariants are polynomial, Mathematical Research Letters, 2 (1995) 239-246. | Zbl 0851.57001
[002] [3] J. Birman and X. S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225-270. | Zbl 0812.57011
[003] [4] U. Burri, For a fixed Turaev shadow all 'Jones-Vassiliev' invariants depend polynomially on the gleams, University of Basel preprint, March 1995.
[004] [5] J. Dean, Many classical knot invariants are not Vassiliev invariants, J. Knot Theory Ramifications, 3 (1994) 7-9. | Zbl 0816.57009
[005] [6] M. Domergue and P. Donato, Integrating a weight system of order n to an invariant of (n-1)-singular knots, J. Knot Theory Ramifications, 5 (1996) 23-35. | Zbl 0868.57010
[006] [7] M. Gussarov, On n-equivalence of knots and invariants of finite degree, in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc., Providence 1994, 173-192. | Zbl 0865.57007
[007] [8] J. H. Przytycki, Vassiliev-Gusarov skein modules of 3-manifolds and criteria for periodicity of knots, Proceedings of low-dimensional topology, May 18-23 1992, International Press, Cambridge MA, 1994.
[008] [9] T. Stanford, Finite-type invariants of knots, links, and graphs, Topology 35 (1996) 1027-1050. | Zbl 0863.57005
[009] [10] T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and knotted graphs, J. Knot Theory Ramifications, 3 (1994) 247-262. | Zbl 0841.57018
[010] [11] T. Stanford, Computing Vassiliev's invariants, University of California at Berkeley preprint, December 1995.
[011] [12] R. Trapp, Twist sequences and Vassiliev invariants, J. Knot Theory Ramifications., 3 (1994) 391-405. | Zbl 0841.57019
[012] [13] V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans. of Math. Mono. 98, Amer. Math. Soc., Providence, 1992.
[013] [14] S. Willerton, Vassiliev knot invariants and the Hopf algebra of chord diagrams, Math. Proc. Camb. Phil. Soc., 119 (1996) 55-65. | Zbl 0878.57013
[014] [15] S. Willerton, A combinatorial half-integration from weight system to Vassiliev knot invariant, J. Knot Theory Ramifications, to appear. | Zbl 0905.57005