Generalized n-colorings of links
Silver, Daniel ; Williams, Susan
Banach Center Publications, Tome 43 (1998), p. 381-394 / Harvested from The Polish Digital Mathematics Library

The notion of an (n,r)-coloring for a link diagram generalizes the idea of an n-coloring introduced by R. H. Fox. For any positive integer n the various (n,r)-colorings of a diagram for an oriented link l correspond in a natural way to the periodic points of the representation shift Φ/n(l) of the link. The number of (n,r)-colorings of a diagram for a satellite knot is determined by the colorings of its pattern and companion knots together with the winding number.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208818
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p381bwm,
     author = {Silver, Daniel and Williams, Susan},
     title = {Generalized n-colorings of links},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {381-394},
     zbl = {0903.57004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p381bwm}
}
Silver, Daniel; Williams, Susan. Generalized n-colorings of links. Banach Center Publications, Tome 43 (1998) pp. 381-394. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p381bwm/

[000] [BuZi] G. Burde and H. Zieschang, Knots, de Gruyter Stud. in Math. 5, de Gruyter, Berlin, 1985.

[001] [CrFo] R. H. Crowell and R. H. Fox, An Introduction to Knot Theory, Ginn and Co., 1963. | Zbl 0126.39105

[002] [Fo1] R. H. Fox, A quick trip through knot theory, in: Topology of 3-Manifolds and Related Topics, M. K. Fort (ed.), Prentice-Hall, N.J. (1961), 120-167.

[003] [Fo2] R. H. Fox, Metacyclic invariants of knots and links, Canad. J. Math. 22 (1970), 193-201. | Zbl 0195.54002

[004] [Ha] R. Hartley, Metabelian representations of knot groups, Pacific J. Math. 82 (1979), 93-104. | Zbl 0404.20032

[005] [HaKe] J. C. Hausmann and M. Kervaire, Sous-groupes dérivés des groupes de noeuds, L'Enseign. Math. 24 (1978), 111-123. | Zbl 0414.57012

[006] [Lt] R. A. Litherland, Cobordism of satellite knots, Contemp. Math. 35 (1984), 327-362.

[007] [LvMe] C. Livingston and P. Melvin, Abelian invariants of satellite knots, in: Geometry and Topology, C. McA. Gordon (ed.), Lecture Notes in Math. 1167, Springer, Berlin, 1985, 217-227.

[008] [LySc] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.

[009] [Pr] J. H. Przytycki, 3-coloring and other elementary invariants of knots, these proceedings.

[010] [Re] K. Reidemeister, Knotentheorie, Ergeb. Math. Grenzgeb. 1, Springer, Berlin, 1932; English translation: Knot Theory, BCS Associates, Moscow, Idaho, 1983.

[011] [Ro] D. Rolfsen, Knots and Links, Math. Lecture Ser. 7, Publish or Perish Inc., Berkeley, 1976. | Zbl 0339.55004

[012] [Sc] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286.

[013] [Se] H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford 2 (1950), 23-32. | Zbl 0035.11103

[014] [SiWi1] D. S. Silver and S. G. Williams, Augmented group systems and shifts of finite type, Israel J. Math. 95 (1996), 231-251. | Zbl 0899.20011

[015] [SiWi2] D. S. Silver and S. G. Williams, Knot invariants from symbolic dynamical systems, Trans. Amer. Math. Soc., to appear.