Skein algebra of a group
Przytycki, Józef ; Sikora, Adam
Banach Center Publications, Tome 43 (1998), p. 297-306 / Harvested from The Polish Digital Mathematics Library

We define for each group G the skein algebra of G. We show how it is related to the Kauffman bracket skein modules. We prove that skein algebras of abelian groups are isomorphic to symmetric subalgebras of corresponding group rings. Moreover, we show that, for any abelian group G, homomorphisms from the skein algebra of G to C correspond exactly to traces of SL(2,C)-representations of G. We also solve, for abelian groups, the conjecture of Bullock on SL(2,C) character varieties of groups - we show that skein algebras are isomorphic to the coordinate rings of the corresponding character varieties.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208813
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p297bwm,
     author = {Przytycki, J\'ozef and Sikora, Adam},
     title = {Skein algebra of a group},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {297-306},
     zbl = {0902.57005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p297bwm}
}
Przytycki, Józef; Sikora, Adam. Skein algebra of a group. Banach Center Publications, Tome 43 (1998) pp. 297-306. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p297bwm/

[000] [B-1] D. Bullock, Estimating a skein module with SL2(C) characters, Proc. Amer. Math. Soc. 125 (1997), 1835-1839. | Zbl 0866.57005

[001] [B-2] D. Bullock, Estimating the states of the Kauffman bracket skein module, this volume. | Zbl 0902.57016

[002] [B-P] D. Bullock, J. H. Przytycki, Kauffman bracket quantization of symmetric algebra and so(3), preprint 1996.

[003] [C-S] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983), 109-146. | Zbl 0529.57005

[004] [F-K] R. Fricke, F. Klein, Vorlesungen über die Theorie der automorphen Functionen, Vol. 1, pp. 365-370. Leipzig: B.G. Teubner 1897. Reprint: New York, Johnson reprint Corporation (Academic Press) 1965.

[005] [Ho] R. D. Horowitz, Characters of free groups represented in two-dimensional special linear group, Comm. Pure and Appl. Math. 25, 1972, 635-649. | Zbl 1184.20009

[006] [H-P-1] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds; in Knots 90, Proceedings of the International Conference on Knot Theory and Related Topics, Osaka (Japan), August 15-19, 1990, Editor A. Kawauchi, Walter de Gruyter 1992, 363-379. | Zbl 0772.57022

[007] [H-P-2] J. Hoste, J. H. Przytycki, The (2,∞)-skein module of lens spaces; a generalization of the Jones polynomial, Journal of Knot Theory and Its Ramifications, 2(3), 1993, 321-333. | Zbl 0796.57005

[008] [H-P-3] J. Hoste, J. H. Przytycki, The Kauffman bracket skein module of S1×S2, Math. Z., 220(1), 1995, 63-73. | Zbl 0826.57007

[009] [Hu] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, Springer-Verlag 1974.

[010] [Jo] T. Jorgensen, Closed geodesics on Riemann surfaces, Proc. Amer. Math. Soc., 72(1), 1978, 140-142. | Zbl 0406.53011

[011] [L-M] M. Lustig, W. Metzler, Integral representations of AutFn and presentation classes of groups, Contemporary Mathematics, Vol 44, 1985, 51-67 (in Combinatorial Methods in Topology and Algebraic Geometry, Ed. J.R.Harper, R.Mandelbaum, Proceedings of a conference in honor of Arthur M.Stone, Rochester 1982).

[012] [Ma-1] W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z., 170, 1980, 91-103. | Zbl 0433.20033

[013] [Ma-2] W. Magnus, The use of 2 by 2 matrices in combinatorial group theory. A survey, Resultate der Mathematik, Vol. 4, 1981, 171-722.

[014] [Pr] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Science, 39(1-2), 1991, 91-100.

[015] [P-S-1] J. H. Przytycki, A. S. Sikora, On Skein Algebras And Sl2(C)-Character Varieties, Topology, submitted. | Zbl 0958.57011

[016] [P-S-2] J. H. Przytycki, A. S. Sikora, in preparation.

[017] [V] H. Vogt, Sur les invariants fondamentaux des équations différentielles linéaires du second ordre. Ann. Sci. Ecole Norm. Sup. (3) 6, Suppl. 3-72 (1889) (Thèse, Paris). | Zbl 21.0314.01