Spin networks and the bracket polynomial
Kauffman, Louis
Banach Center Publications, Tome 43 (1998), p. 187-204 / Harvested from The Polish Digital Mathematics Library

This paper discusses Penrose spin networks in relation to the bracket polynomial.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:208804
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p187bwm,
     author = {Kauffman, Louis},
     title = {Spin networks and the bracket polynomial},
     journal = {Banach Center Publications},
     volume = {43},
     year = {1998},
     pages = {187-204},
     zbl = {0902.57008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p187bwm}
}
Kauffman, Louis. Spin networks and the bracket polynomial. Banach Center Publications, Tome 43 (1998) pp. 187-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p187bwm/

[000] [1] D. Bullock, Rings of SL2(C) characters and the Kauffman bracket skein module, preprint, 1996.

[001] [2] J. Scott Carter, D. E. Flath and M. Saito, The Classical and Quantum 6j-Symbols, Math. Notes 43, Princeton Univ. Press, 1995. | Zbl 0851.17001

[002] [3] J. Scott Carter, L. H. Kauffman and M. Saito, Diagrammatics, Singularities and Their Algebraic Interpretations, in: Conference Proceedings of the Brasilian Mathematical Society, to appear.

[003] [4] L. Crane and I. Frenkel, Four dimensional topological quantum field theory, Hopf categories and canonical bases, J. Math. Phys. 35 (1994), 5136-5154. | Zbl 0892.57014

[004] [5] L. Crane, L. H. Kauffman and D. Yetter, State sum invariants of 4-manifolds, J. Knot Theory and Its Ramifications, 1997, to appear. | Zbl 0883.57021

[005] [6] D. S. Freed and R. E. Gompf, Computer calculation of Witten's three-manifold invariant, Comm. Math. Phys. 141 (1991), 79-117. | Zbl 0739.53065

[006] [7] B. Hasslacher and M. J. Perry, Spin networks are simplicial quantum gravity, Phys. Lett. B 103 (1981), 21-24.

[007] [8] L. C. Jeffrey, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semi-classical approximation, Comm. Math. Phys. 147 (1992), 563-604. | Zbl 0755.53054

[008] [9] V. F. R. Jones, A polynomial invariant of links via von Neumann algebras, Bull. Amer. Math. Soc. 129 (1985), 103-112.

[009] [10] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. | Zbl 0622.57004

[010] [11] L. H. Kauffman, Statistical mechanics and the Jones polynomial, in: Contemp. Math. 78, Amer. math. Soc., 1989, 263-297.

[011] [12] L. H. Kauffman, Map coloring, q-deformed spin networks, and Turaev-Viro invariants for 3-manifolds, Internat. J. Modern Phys. B 6 (1992), 1765-1794. | Zbl 0826.57009

[012] [13] L. H. Kauffman, Knots and Physics, World Scientific, 1991, 1993. | Zbl 0733.57004

[013] [14] L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, Ann. Math. Stud. 114, Princeton Univ. Press, 1994. | Zbl 0821.57003

[014] [15] R. Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995), 6106-6129. | Zbl 0877.57008

[015] [16] J. P. Moussouris, Quantum Models of Space-Time Based on Recoupling Theory, thesis, Oxford Univ., 1983.

[016] [17] R. Penrose, Angular momentum: An approach to Combinatorial Spacetime, in: Quantum Theory and Beyond, T. Bastin (ed.), Cambridge Univ. Press, 1969.

[017] [18] R. Penrose, Applications of negative dimensional tensors, in: Combinatorial Mathematics and Its Applications, D. J. A. Welsh (ed.), Academic Press, 1971. | Zbl 0216.43502

[018] [19] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in: Spectroscopic and Group Theoretical Methods in Theoretical Physics, North-Holland, Amsterdam, 1968.

[019] [20] K. Reidemeister, Knotentheorie, Julius Springer, Berlin, 1933; Chelsea, N.Y., 1948.

[020] [21] N. Y. Reshetikhin and V. Turaev, Invariants of Three Manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. | Zbl 0725.57007

[021] [22] L. Rozansky, Witten's invariant of 3-dimensional manifolds: loop expansion and surgery calculus, in: Knots and Applications, L. Kauffman (ed.), World Scientific, 1995. | Zbl 1149.58307

[022] [23] A. Schwarz, The partition function of degenerate quadratic functional and Ray-Singer invariants, Lett. Math. Phys. 2 (1978), 247. | Zbl 0383.70017

[023] [24] L. Smolin, The geometry of quantum spin networks, preprint, Center for Gravitational Physics and Geometry, Penn. State University, University Park, PA, 1996.

[024] [25] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j symbols, Topology 31 (1992), 865-902. | Zbl 0779.57009

[025] [26] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399. | Zbl 0667.57005

[026] [27] E. Witten, 2+1 gravity as an exactly soluble system, Nuclear Phys. B 311, (1988/89), 46-78. | Zbl 1258.83032