We show that Lissajous knots are equivalent to billiard knots in a cube. We consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a square modulo 2.
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p145bwm, author = {Jones, Vaughan and Przytycki, J\'ozef}, title = {Lissajous knots and billiard knots}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {145-163}, zbl = {0901.57012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p145bwm} }
Jones, Vaughan; Przytycki, Józef. Lissajous knots and billiard knots. Banach Center Publications, Tome 43 (1998) pp. 145-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p145bwm/
[000] [BHJS94] M. G. V. Bogle, J. E. Hearst, V. F. R. Jones and L. Stoilov, Lissajous knots, Journal of Knot Theory and Its Ramifications 3 (1994), 121-140. | Zbl 0834.57005
[001] [BGKT94] M. Boshernitzan, G. Galperin, T. Kröger and S. Troubetzkoy, Some remarks on periodic billiard orbits in rational polygons, preprint, SUNY Stony Brook, 1994.
[002] [Cro95] P. Cromwell, Borromean triangles in Viking art, Math. Int. 17 (1995), 3-4.
[003] [GKT94] G. Galperin, T. Kröger and S. Troubetzkoy, Local instability of orbits in polygonal and polyhedral billiards, Comm. Math. Phys. (1994).
[004] [GSV92] G. Galperin, A. Stepin and Ya. B. Vorobets, Periodic billiard trajectories in polygons: generation mechanisms, Russian Math. Surveys 47 (3) (1992), 5-80. | Zbl 0777.58031
[005] [HK79] R. Hartley and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann. 243 (1979). | Zbl 0394.57009
[006] [KMS86] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986), 293-311. | Zbl 0637.58010
[007] [Mu71] K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162-174. | Zbl 0206.25603
[008] [Pr95] J. H. Przytycki, Symmetry of knots: Lissajous and billiard knots, notes from a talk given at the Subfactor Seminar, U.C. Berkeley, May 1995.
[009] [Re91] A. W. Reid, Arithmeticity of knot complements, J. London Math. Soc. (2) 43 (1991), 171-184. | Zbl 0847.57013
[010] [Ro76] D. Rolfsen, Knots and links, Publish or Perish, 1976.
[011] [Ta95] S. Tabachnikov, Billiards. The Survey, preprint, 1995.
[012] [Wi53] R. Wichterman, The biology of Paramecium, The Blakiston Company, Inc., New York, Toronto, 1953.