We consider a cobordism category whose morphisms are punctured connected sums of ’s (wormhole spaces) with embedded admissibly colored banded trivalent graphs. We define a TQFT on this cobordism category over the field of rational functions in an indeterminant A. For r large, we recover, by specializing A to a primitive 4rth root of unity, the Witten-Reshetikhin-Turaev TQFT restricted to links in wormhole spaces. Thus, for r large, the rth Witten-Reshetikhin-Turaev invariant of a link in some wormhole space, properly normalized, is the value of a certain rational function at . We relate our work to Hoste and Przytycki’s calculation of the Kauffman bracket skein module of .
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p119bwm, author = {Gilmer, Patrick}, title = {A TQFT for Wormhole cobordisms over the field of rational functions}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {119-127}, zbl = {0907.57004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p119bwm} }
Gilmer, Patrick. A TQFT for Wormhole cobordisms over the field of rational functions. Banach Center Publications, Tome 43 (1998) pp. 119-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p119bwm/
[000] [A] M. F. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186. | Zbl 0692.53053
[001] [BHMV] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological Quantum Field Theories Derived from the Kauffman Bracket, Topology 34 (1995), 883-927. | Zbl 0887.57009
[002] [G] P. Gilmer, Invariants for 1-dimensional cohomology classes arising from TQFT, Top. and its Appl. 75 (1997), 217-259. | Zbl 0870.57015
[003] [HP] J. Hoste, J. Przytycki, The Kauffman Bracket Skein Module of , Math. Zeit. 220 (1995), 65-73. | Zbl 0826.57007
[004] [J] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bulletin AMS 12 (1985), 103-111. | Zbl 0564.57006
[005] [K] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. | Zbl 0622.57004
[006] [KL] L. H. Kauffman, S. Lins, Temperley Lieb recoupling theory and invariants of -manifolds, Annals of Math Studies 91994), Princeton Univ. Press, Princeton N.J.
[007] [Ki] R. Kirby, The Topology of 4-manifolds, Springer Lecture Notes in Math. 1374.
[008] [La] R. Lawrence, Asymptotic expansions of Witten-Reshetikhin-Turaev invariants for some simple 3-manifolds, J. Math. Phys. 36 (1995), 6106-6129. | Zbl 0877.57008
[009] [L] W. B. R. Lickorish, The skein Method for three manifolds, J. of Knot Th. and its Ramif. 2 (1993), 171-194. | Zbl 0793.57003
[010] [MV] G. Masbaum, P. Vogel, Verlinde Formulae for surfaces with spin structure, Geometric Topology, Joint U.S. Israel Workshop on Geometric Topology June 10-16, 1992 Technion, Haifa, Israel Contemporary Mathematics 164 (Gordon, Moriah, Waynryb, ed.), American Math. Soc., 1994, 119-137. | Zbl 0824.57012
[011] [RT] N. Reshetikhin, V. Turaev, Invariants of 3-manifolds via link-polynomials and quantum groups, Invent. Math. 103 (1991), 547-597. | Zbl 0725.57007
[012] [R] J. Roberts, Skein Theory and Turaev-Viro invariants, Topology 34 (1995), 771-787. | Zbl 0866.57014
[013] [W] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351-399. | Zbl 0667.57005