Topological Quantum Field Theories are closely related to representations of Mapping Class Groups of surfaces. Considering the case of the TQFTs derived from the Kauffman bracket, we describe the central extension coming from this representation, which is just a projective extension.
@article{bwmeta1.element.bwnjournal-article-bcpv42i1p111bwm, author = {Gervais, Sylvain}, title = {The $p\_1$-central extension of the Mapping Class Group of orientable surfaces}, journal = {Banach Center Publications}, volume = {43}, year = {1998}, pages = {111-117}, zbl = {0923.57005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p111bwm} }
Gervais, Sylvain. The $p_1$-central extension of the Mapping Class Group of orientable surfaces. Banach Center Publications, Tome 43 (1998) pp. 111-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv42i1p111bwm/
[000] [A1] M. Atiyah, Topological quantum field theories, Publ. Math. IHES 68 (1989), 175-186 . | Zbl 0692.53053
[001] [A2] M. Atiyah, On framings of 3-manifolds, Topology 29 (1990), 1-7. | Zbl 0716.57011
[002] [BHMV1] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), 685-699. | Zbl 0771.57004
[003] [BHMV2] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Remarks on the Three-manifold Invariants , in ’Operator Algebras, Mathematical Physics, and Low Dimensional Topology’ (NATO Workshop July 1991) Edited by R. Herman and B. Tanbay, Research Notes in Mathematics Vol 5, 39-59.
[004] [BHMV3] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Topological Quantum Field Theories derived from the Kauffman bracket, Topology 34 (1995), 883-927. | Zbl 0887.57009
[005] [G1] S. Gervais, Etude de certaines extensions centrales du 'mapping class group' des surfaces orientables, thèse, Université de Nantes, 1994.
[006] [G2] S. Gervais, Presentation and central extensions of Mapping Class Groups, Trans. of Amer. Math. Soc. 348 (1996), 3097-3132. | Zbl 0861.57023
[007] [M-R] G. Masbaum and J. Roberts, On Central Extensions of Mapping Class Groups, Math. Ann. 302 (1995), 131-150. | Zbl 0823.57010
[008] [St] N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951. | Zbl 0054.07103
[009] [W] B. Wajnryb, A simple presentation for the Mapping Class Group of an orientable surface, Israel Journal of Math. 45 (1983), 157-174 . | Zbl 0533.57002