Let L(z) be the Lie norm on and L*(z) the dual Lie norm. We denote by the space of complex harmonic functions on the open Lie ball and by the space of entire harmonic functions of exponential type (A,L*). A continuous linear functional on these spaces will be called a harmonic functional or an entire harmonic functional. We shall study the conical Fourier-Borel transformations on the spaces of harmonic functionals or entire harmonic functionals.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p95bwm, author = {Morimoto, Mitsuo and Fujita, Keiko}, title = {Conical Fourier-Borel transformations for harmonic functionals on the Lie ball}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {95-113}, zbl = {0874.46028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p95bwm} }
Morimoto, Mitsuo; Fujita, Keiko. Conical Fourier-Borel transformations for harmonic functionals on the Lie ball. Banach Center Publications, Tome 37 (1996) pp. 95-113. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p95bwm/
[000] [1] K. Ii, On a Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J., 38 (1986), 57-69. | Zbl 0663.58016
[001] [2] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, in: Complex Analysis, Banach Center Publications 11, PWN-Polish Scientific Publishers, Warsaw, 1983, 223-250.
[002] [3] M. Morimoto and K. Fujita, Analytic functionals and entire functionals on the complex light cone, to appear in Hiroshima Math. J., 25 (1995) or in 26 (1996). | Zbl 0869.46020
[003] [4] C. Müller, Spherical Harmonics, Lecture Notes in Math., 17 (1966), Springer.
[004] [5] R. Wada, On the Fourier-Borel transformations of analytic functionals on the complex sphere, Tôhoku Math. J., 38 (1986), 417-432. | Zbl 0649.46038
[005] [6] R. Wada, Holomorphic functions on the complex sphere, Tokyo J. Math., 11 (1988), 205-218. | Zbl 0656.32002
[006] [7] R. Wada and M. Morimoto, A uniqueness set for the differential operator , Tokyo J. Math., 10 (1987), 93-105. | Zbl 0641.32005