In this article, estimates of the hyperbolic and Carathéodory distances in domains , n ≥ 1, are obtained. They are equally valid for the Kobayashi distance.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p85bwm, author = {Fadlalla, Adib}, title = {Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in $$\mathbb{C}$^N$ }, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {85-94}, zbl = {0873.32026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p85bwm} }
Fadlalla, Adib. Transfer of Estimates from Convex to Strongly Pseudoconvex Domains in $ℂ^N$ . Banach Center Publications, Tome 37 (1996) pp. 85-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p85bwm/
[000] [1] M. Abate, Iteration theory of holomorphic maps on taut manifolds, Italy: Mediterranean Press, 1989.
[001] [2] C. Carathéodory, Über eine spezielle Metrik, die in der Theorie der analytischen Funktionen auftritt, Atti Pontif. Accad. Sci. Nuovi Lincei 80 (1927), 135-141.
[002] [3] A. A. Fadlalla, On the group of automorphism of the Euclidean hypersphere, Mathematika 15 (1968), 193-198. | Zbl 0167.06701
[003] [4] A. A. Fadlalla, On the boundary behaviour of the Carathéodory and Kobayashi distances in strongly pseudoconvex domains in , Proc. Int. Workshop in Wuppertal (1990), Aspects of Mathematics (1990), 111-114. | Zbl 0738.32016
[004] [5] A. A. Fadlalla, The Carathéodory distance in strongly pseudoconvex domains, Math. Ann. 298 (1994), 141-144. | Zbl 0788.32019
[005] [6] F. Forestneric, J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252. | Zbl 0644.32013
[006] [7] E. Vesentini, Complex geodesic, Compositio Math. 44 (1981), 375-394. | Zbl 0488.30015
[007] [8] N. Vormoor, Topologische Fortsetzung biholomorpher Funktionen auf den Rand bei beschränkten streng-pseudokonvexen Gebieten in , Math. Ann. 204 (1973), 239-261.