Carathéodory balls and norm balls in Hp,n=zn:zp<1
Schwarz, Binyamin ; Srebro, Uri
Banach Center Publications, Tome 37 (1996), p. 75-83 / Harvested from The Polish Digital Mathematics Library

It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on Hp,n=zn:zp<1 which are balls with respect to the complex lp norm in n are those centered at the origin.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208619
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm,
     author = {Schwarz, Binyamin and Srebro, Uri},
     title = {Caratheodory balls and norm balls in $H\_{p,n} = {z [?] C^{n} :[?]z[?] \_{p} < 1}$
            },
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {75-83},
     zbl = {0873.32027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm}
}
Schwarz, Binyamin; Srebro, Uri. Carathéodory balls and norm balls in $H_{p,n} = {z ∈ ℂ^{n} :∥z∥ _{p} < 1}$
            . Banach Center Publications, Tome 37 (1996) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm/

[000] [D] S. Dineen, The Schwarz lemma, Oxford Mathematical Monograph, Clarendon Press, 1989. | Zbl 0708.46046

[001] [JP] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993. | Zbl 0789.32001

[002] [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Annali d. Scuola Normale Superiore di Pisa XX Fasc. 4 (1993), 535-543. | Zbl 0812.32010

[003] [R] W. Rudin, Function theory in the unit ball of n, Springer, New York, 1980. | Zbl 0495.32001

[004] [Sch] B. Schwarz, Carathéodory balls and norm balls of the domain H=(z1,z2)2:|z1|+|z2|<1, Israel J. of Math. 84 (1993), 119-128.

[005] [Sr] U. Srebro, Carathéodory balls and norm balls in H=zn:z1<1, Israel J. Math. 89 (1995), 61-70.

[006] [Z] W. Zwonek, Carathéodory balls and norm balls of the domains Hn=zn:|z1|+...+|zn|<1, Israel J. Math. 89 (1995), 71-76. | Zbl 0824.32007