It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only balls in the Carathéodory distance on which are balls with respect to the complex norm in are those centered at the origin.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm, author = {Schwarz, Binyamin and Srebro, Uri}, title = {Caratheodory balls and norm balls in $H\_{p,n} = {z [?] C^{n} :[?]z[?] \_{p} < 1}$ }, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {75-83}, zbl = {0873.32027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm} }
Schwarz, Binyamin; Srebro, Uri. Carathéodory balls and norm balls in $H_{p,n} = {z ∈ ℂ^{n} :∥z∥ _{p} < 1}$ . Banach Center Publications, Tome 37 (1996) pp. 75-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p75bwm/
[000] [D] S. Dineen, The Schwarz lemma, Oxford Mathematical Monograph, Clarendon Press, 1989. | Zbl 0708.46046
[001] [JP] M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993. | Zbl 0789.32001
[002] [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Annali d. Scuola Normale Superiore di Pisa XX Fasc. 4 (1993), 535-543. | Zbl 0812.32010
[003] [R] W. Rudin, Function theory in the unit ball of , Springer, New York, 1980. | Zbl 0495.32001
[004] [Sch] B. Schwarz, Carathéodory balls and norm balls of the domain , Israel J. of Math. 84 (1993), 119-128.
[005] [Sr] U. Srebro, Carathéodory balls and norm balls in , Israel J. Math. 89 (1995), 61-70.
[006] [Z] W. Zwonek, Carathéodory balls and norm balls of the domains , Israel J. Math. 89 (1995), 71-76. | Zbl 0824.32007