The Douady-Earle extension of quasihomographies
Sakan, Ken-Ichi ; Zając, Józef
Banach Center Publications, Tome 37 (1996), p. 35-44 / Harvested from The Polish Digital Mathematics Library

Quasihomography is a useful notion to represent a sense-preserving automorphism of the unit circle T which admits a quasiconformal extension to the unit disc. For K ≥ 1 let AT(K) denote the family of all K-quasihomographies of T. With any fAT(K) we associate the Douady-Earle extension Ef and give an explicit and asymptotically sharp estimate of the L norm of the complex dilatation of Ef.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208614
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p35bwm,
     author = {Sakan, Ken-Ichi and Zaj\k ac, J\'ozef},
     title = {The Douady-Earle extension of quasihomographies},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {35-44},
     zbl = {0889.30017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p35bwm}
}
Sakan, Ken-Ichi; Zając, Józef. The Douady-Earle extension of quasihomographies. Banach Center Publications, Tome 37 (1996) pp. 35-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p35bwm/

[000] [DE] A. Douady and C.I. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157 (1986), 23-48. | Zbl 0615.30005

[001] [K] J.G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. 12 (1987), 19-24. | Zbl 0563.30016

[002] [LP] A. Lecko and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska Sectio A 42 (1988), 59-68. | Zbl 0712.30040

[003] [P1] D. Partyka, The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sectio A 44 (1990), 45-57.

[004] [P2] D. Partyka, A distortion theorem for quasiconformal automorphisms of the unit disc, Ann. Polon. Math. 55 (1991), 277-281. | Zbl 0759.30009

[005] [P3] D. Partyka, The maximal value of the function [0;1]rΦK2(r)-r, Bull. Soc. Sci. Lettres Łódź 45 Sér. Rech. Déform. 20 (1995), 49-55.

[006] [Z1] J. Zając, The distortion function ΦK and quasihomographies, Current Topics of Analytic Function Theory, (1992), 403-428.

[007] [Z2] J. Zając, Quasihomographies, Monograph, Preprint.