Pairs of Clifford algebras of the Hurwitz type
Królikowski, Wiesław
Banach Center Publications, Tome 37 (1996), p. 327-330 / Harvested from The Polish Digital Mathematics Library

For a given Hurwitz pair [S(QS),V(QV),o] the existence of a bilinear mapping :C(QS)×C(QV)C(QV) (where C(QS) and C(QV) denote the Clifford algebras of the quadratic forms QS and QV, respectively) generated by the Hurwitz multiplication “o” is proved and the counterpart of the Hurwitz condition on the Clifford algebra level is found. Moreover, a necessary and sufficient condition for "⭑" to be generated by the Hurwitz multiplication is shown.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208609
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p327bwm,
     author = {Kr\'olikowski, Wies\l aw},
     title = {Pairs of Clifford algebras of the Hurwitz type},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {327-330},
     zbl = {0873.15021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p327bwm}
}
Królikowski, Wiesław. Pairs of Clifford algebras of the Hurwitz type. Banach Center Publications, Tome 37 (1996) pp. 327-330. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p327bwm/

[000] [1] W. Królikowski, On Fueter-Hurwitz regular mappings, Dissertationes Math. 353 (1996). | Zbl 0864.30038

[001] [2] J. Ławrynowicz and J. Rembieliński, Pseudo-Euclidean Hurwitz pairs and generalized Fueter equations, in: Clifford algebras and their applications in mathematical physics, Proc., Canterbury 1985, J. S. R. Chisholm and A. K. Common (eds.), Reidel, Dordrecht, 1986, 39-48.

[002] [3] J. Ławrynowicz and J. Rembieliński, On the composition of nondegenerate quadratic forms with an arbitrary index, Ann. Fac. Sci. Toulouse 10 (1989), 141-168. | Zbl 0701.15025

[003] [4] J. Ławrynowicz and J. Rembieliński, Pseudo-Euclidean Hurwitz pairs and the Kałuża-Klein theories, J. Phys. A Math. Gen. 20 (1987), 5831-5848. | Zbl 0654.15021