Let V be a ℂ-space, be a pre-braid operator and let This paper offers a sufficient condition on (σ,F) that there exists a Clifford algebra Cl(V,σ,F) as the Chevalley F-dependent deformation of an exterior algebra . If and F is non-degenerate then F is not a σ-morphism in σ-braided monoidal category. A spinor representation as a left Cl(V,σ,F)-module is identified with an exterior algebra over F-isotropic ℂ-subspace of V. We give a sufficient condition on braid σ that the spinor representation is faithful and irreducible.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p315bwm, author = {Durdevic, Mico and Oziewicz, Zbigniew}, title = {Spinors in braided geometry}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {315-325}, zbl = {0873.15020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p315bwm} }
Đurđević, Mićo; Oziewicz, Zbigniew. Spinors in braided geometry. Banach Center Publications, Tome 37 (1996) pp. 315-325. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p315bwm/
[000] [1] R. Bautista, A. Criscuolo, M. Đurđević, M. Rosenbaum and J.D. Vergara, Quantum Clifford algebras from spinor representations, J. Math. Phys. (1996), to appear. | Zbl 0861.15029
[001] [2] N. Bourbaki, Algébre, chap. 9: formes sesquilinéaries et formes quadratiques, Paris, Hermann, 1959.
[002] [3] É. Cartan, The Theory of Spinors, Dover Pub., New York, 1966. | Zbl 0147.40101
[003] [4] A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras. Spinor Structures, Mathematics and its Applications vol. 57, Kluwer Academic Publishers, 1990.
[004] [5] M. Đurđević, Braided Clifford algebras as braided quantum groups, Adv. Apppl. Cliff. Algebras 4 (2) (1994), 145-156. | Zbl 0841.15024
[005] [6] M. Đurđević, Generalized braided quantum groups, Isr. J. Math. (1996), to appear.
[006] [7] T. Hayashi, Q-analogues of Clifford and Weyl algebras - spinor and oscilator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129-144.
[007] [8] S. Majid, Braided groups and algebraic quantum field theories, Lett. Math. Phys. 22 (1991), 167-176. | Zbl 0745.16019
[008] [9] S. Majid, Braided groups, J. Pure and Applied Algebra 86 (1993), 187-221. | Zbl 0797.17004
[009] [10] S. Majid, Transmutation theory and rank for quantum braided groups, Math. Proc. Camb. Phil. Soc. 113 (1993), 45-70. | Zbl 0781.17006
[010] [11] S. Majid, Free braided differential calculus, braided binomial theorem and the braided exponential map, J. Math. Phys. 34 (1993), 4843-4856. | Zbl 0807.16035
[011] [12] S. Majid, Foundations of Quantum Group Theory, Cambridge University Press 1995. | Zbl 0857.17009
[012] [13] Z. Oziewicz, E. Paal and J. Różański, Derivations in braided geometry, Acta Physica Polonica B 26 (7) (1995), 1253-1273. | Zbl 0966.81517
[013] [14] Z. Oziewicz, Clifford algebra for Hecke braid, in: Clifford Algebras and Spinor Structures, R. Ablamowicz and P. Lounesto (ed.), Mathematics and Its Applications vol. 321, Kluwer Academic Publishers, Dordrecht 1995, pp. 397-411. | Zbl 0845.15011
[014] [15] S. Shnider and S. Sternberg, Quantum Groups, from coalgebras to Drinfeld algebras a guided tour, International Press Incorporated, Boston, 1993. | Zbl 0845.17015
[015] [16] M. E. Sweedler, Hopf Algebras, Benjamin, Inc., New York, 1969.
[016] [17] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys. 122 (1989), 125-170. | Zbl 0751.58042