The paper is devoted to a class of functions analytic and univalent in the unit disk that are connected with an antigraphy . Variational formulas and Grunsky inequalities are derived. As an application there are given some estimations in the considered class of functions.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p21bwm, author = {Macura, Janina}, title = {A variational method for univalent functions connected with antigraphy}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {21-28}, zbl = {0867.30019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p21bwm} }
Macura, Janina. A variational method for univalent functions connected with antigraphy. Banach Center Publications, Tome 37 (1996) pp. 21-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p21bwm/
[000] [1] R. Caccioppoli, Sui funzionali lineari nel campo delle funzioni analitiche, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 13 (1931), 263-266. | Zbl 0002.03103
[001] [2] G. M. Goluzin, Geometričeskaya teorya funkcii kompleksnogo peremennogo, Moskwa 1966, 68-109, 157-158.
[002] [3] H. Jondro, Sur une méthode variationnelle dans la famille des fonctions de Grunsky-Shah, Bull. Acad. Polon. Sci. 27 (1979), 541-547. | Zbl 0498.30023
[003] [4] H. Jondro, Les inégalités du type de Grunsky pour les fonctions de la classe K, Ann. Polon. Math. 45 (1985), 43-53. | Zbl 0581.30019
[004] [5] G. Schober, Univalent functions, Selected Topics, Lecture Notes in Mathematics 478, Springer-Verlag 1975.