It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm, author = {Laville, Guy and Ramadanoff, Ivan}, title = {Stone-Weierstrass theorem}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {189-194}, zbl = {0866.30038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm} }
Laville, Guy; Ramadanoff, Ivan. Stone-Weierstrass theorem. Banach Center Publications, Tome 37 (1996) pp. 189-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm/
[000] [1] R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor-valued functions, Kluwer. | Zbl 0747.53001
[001] [2] J. Dugundji, Topology, Allyn and Bacon.
[002] [3] W. Feller, An introduction to the theory of Probability and its applications, J. Wiley.
[003] [4] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel.