Stone-Weierstrass theorem
Laville, Guy ; Ramadanoff, Ivan
Banach Center Publications, Tome 37 (1996), p. 189-194 / Harvested from The Polish Digital Mathematics Library

It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208596
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm,
     author = {Laville, Guy and Ramadanoff, Ivan},
     title = {Stone-Weierstrass theorem},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {189-194},
     zbl = {0866.30038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm}
}
Laville, Guy; Ramadanoff, Ivan. Stone-Weierstrass theorem. Banach Center Publications, Tome 37 (1996) pp. 189-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p189bwm/

[000] [1] R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor-valued functions, Kluwer. | Zbl 0747.53001

[001] [2] J. Dugundji, Topology, Allyn and Bacon.

[002] [3] W. Feller, An introduction to the theory of Probability and its applications, J. Wiley.

[003] [4] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel.