Using Clifford analysis in a multidimensional space some elliptic, hyperbolic and parabolic systems of partial differential equations are constructed, which are related to the well-known classical equations. To obtain parabolic systems Clifford algebra is modified and some corresponding differential operator is constructed. For systems obtained the boundary and initial value problems are solved.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p173bwm, author = {Obolashvili, Elena}, title = {Some partial differential equations in Clifford analysis}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {173-179}, zbl = {0870.35021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p173bwm} }
Obolashvili, Elena. Some partial differential equations in Clifford analysis. Banach Center Publications, Tome 37 (1996) pp. 173-179. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p173bwm/
[000] [1] M. Begher, R. Gilbert, Piecewise continuous solution of pseudoparabolic equations in two space dimensions, Proc. Royal Soc. Edinburgh 81A (1978), 153-173. | Zbl 0395.35047
[001] [2] A. Bitsadze, Boundary value problems of elliptic equations of second order, Nauka, Moscow, 1966 (Russian). | Zbl 0167.09401
[002] [3] F. Brack, R. Delanghe, F. Sommen, Clifford Analysis, Pitman, London, 1982.
[003] [4] A. Dzhuraev, On the Moisil-Theodorescu system, P.D.E. with complex analysis, (editors H. Begher and A. Jeffrey), Longman Scient. and Techn. 1992, 186-203. | Zbl 0826.35017
[004] [5] K. Gurlebeck, W. Sproßig, Quaternionic analysis and elliptic boundary value problems, Akademie-Verlag, Berlin 1989. | Zbl 0699.35007
[005] [6] K. Habetha, Function theory in algebras. Complex analysis, Methods, Trends and Applications. Ak. Verlag, Berlin 1983, 225-237.
[006] [7] V. Iftime, Fonctions hypercomplexes. Bull. Math. R. S. de Roumanie 9(57) (1965), 279-332.
[007] [8] H. Liede, The existence and uniqueness theorems of the linear and nonlinear R.-H. problems for the generalized holomorphic vector of the second kind, Acta Math. Sci. Engl. Ed. 10 no. 2 (1990), 185-199. | Zbl 0722.30025
[008] [9] G. Moisil, N. Theodorescu, Fonctions holomorphes dans l'espace, Mathematica 5 (1931).
[009] [10a] E. Obolashvili, Space generalized holomorphic vectors, Diff. Urav. T.XI.1, 1975, 108-115. Minsk (Russian).
[010] [10b] E. Obolashvili, Effective solutions of some boundary value problems in two and three dimensional cases, Functional analytic methods in complex analysis and applications to PDE, 1988.Trieste, 149-172.
[011] [10c] E. Obolashvili, Some boundary value problems for metaparabolic equations (Russian). Proceeding of I. Vekua Inst. of Applied math. T.1, N.1, 1985, 161-164.