A tutorial on conformal groups
Porteous, Ian
Banach Center Publications, Tome 37 (1996), p. 137-150 / Harvested from The Polish Digital Mathematics Library

Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to p,q, the real vector space p+q, furnished with the quadratic form x(2)=x·x=-x12-x22-...-xp2+xp+12+...+xp+q2, and especially with a description of this group that involves Clifford algebras.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208590
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p137bwm,
     author = {Porteous, Ian},
     title = {A tutorial on conformal groups},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {137-150},
     zbl = {0873.15018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p137bwm}
}
Porteous, Ian. A tutorial on conformal groups. Banach Center Publications, Tome 37 (1996) pp. 137-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p137bwm/

[000] [1] L. Ahlfors, Möbius transformations and Clifford numbers, I. Chavel, H.M. Parkas (eds.). Differential Geometry and Complex Analysis. Dedicated to H.E. Rauch, Springer-Verlag, Berlin, (1985), 65-73.

[001] [2] É. Cartan, Sur l’espace anallagmatique réel à n dimensions, Ann. Polon. Math. 20 (1947), 266-278. | Zbl 0032.11403

[002] [3] É. Cartan, Deux théorèmes de géométrie anallagmatique réelle à n dimensions, Ann. Mat. Pura Appl. (4)28 (1949), 1-12. | Zbl 0036.37101

[003] [4] W.K. Clifford, (1876) On the Classification of Geometric Algebras, published as Paper XLIII in Mathematical papers. Edited by R. Tucker, Macmillan, London (1882).

[004] [5] J. Cnops, Hurwitz Pairs and Applications of Möbius Transformations. Thesis, Universiteit Gent, 1994.

[005] [6] J. Fillmore, and A. Springer, Möbius groups over general fields using Clifford algebras associated with spheres, Int. J. Theo. Phys. 29 (1990), 225-246 | Zbl 0702.51003

[006] [7] J. Haantjes, Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself, Proc. Ned. Akad. Wet. (Math.) 40 (1937), 700-705. | Zbl 0017.42201

[007] [8] R. Hermann, Appendix Kleinian mathematics from an advanced standpoint, A: Conformal and non-Euclidean geometry in R3 from the Kleinian viewpoint, bound with Klein F. Developments of Mathematics in the 19th century. Translated by M. Ackerman, Math. Sci. Press, Brookline, Mass. USA, 1979, 367-376.

[008] [9] N.H. Kuiper, On conformally-flat spaces in the large, Ann. Math. 50 (1949), 916-924. | Zbl 0041.09303

[009] [10] J. Liouville, Appendix to Monge, G. Application de l'analyse à la geométrie, 5 éd. par Liouville, 1850.

[010] [11] J. Maks, Modulo (1,1) periodicity of Clifford algebras and the generalized (anti-)Möbius transformations. PhD Thesis, Technische Universiteit Delft., 1989.

[011] [12] J. Maks, Clifford algebras and Möbius transformations, in A. Micali et al. (eds.) Clifford Algebras and their Applications in Mathematical Physics, Kluwer Acad. Publ., Dordrecht 1992. | Zbl 0760.15025

[012] [13] J.-B.-M.-C. Meusnier, Mémoire sur la courbure des surfaces, Mémoire Div. Sav., 10 (1785), 477-510.

[013] [14] I. R. Porteous, Topological Geometry, 2nd Edition, with additional material on Triality, Cambridge University Press, 1981. (The part of this book concerned with Clifford algebras forms part of a new edition entitled Clifford Algebras and the Classical Groups published in 1995 by Cambridge University Press.)

[014] [15] I. R. Porteous, Clifford algebra tables in F. Brackx et al (eds.). Clifford Algebras and their applications in Mathematical Physics, Kluwer Academic Publishers, 1993, 13-22.

[015] [16] K. Th. Vahlen, Über Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-593. | Zbl 33.0721.01