Subordination theory for holomorphic mappings of several complex variables
Kohr, Gabriela ; Kohr-Ile, Mirela
Banach Center Publications, Tome 37 (1996), p. 129-134 / Harvested from The Polish Digital Mathematics Library

The authors obtain a generalization of Jack-Miller-Mocanu’s lemma and, using the technique of subordinations, deduce some properties of holomorphic mappings from the unit polydisc in n into n.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208589
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm,
     author = {Kohr, Gabriela and Kohr-Ile, Mirela},
     title = {Subordination theory for holomorphic mappings of several complex variables},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {129-134},
     zbl = {0872.32002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm}
}
Kohr, Gabriela; Kohr-Ile, Mirela. Subordination theory for holomorphic mappings of several complex variables. Banach Center Publications, Tome 37 (1996) pp. 129-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm/

[000] [1] B. Chabat, Introduction à l'analyse complexe, tome 2, ed. MIR, Moscou, 1990.

[001] [2] Sh. Gong and S. S. Miller, Partial differential subordinations and inequalities defined on complete circular domain, Comm. Partial Differential Equations, 11 (1986), 1243-1255. | Zbl 0606.32002

[002] [3] G. Kohr and M. Kohr-Ile, Partial differential subordinations and inequalities for holomorphic mappings of several complex variables, Ms., to appear.

[003] [4] P. Liczberski, Jack's Lemma for holomorphic mappings, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 40 (1986), 131-139. | Zbl 0639.32003

[004] [5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305. | Zbl 0367.34005

[005] [6] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 20 (1981), 157-171. | Zbl 0439.30015

[006] [7] S. S. Miller and P. T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai (Mathematica), 34 (1989), 13-33. | Zbl 0900.30031

[007] [8] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241-248. | Zbl 0196.09601

[008] [9] T. J. Suffridge, Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575-589. | Zbl 0263.30016