The authors obtain a generalization of Jack-Miller-Mocanu’s lemma and, using the technique of subordinations, deduce some properties of holomorphic mappings from the unit polydisc in into .
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm, author = {Kohr, Gabriela and Kohr-Ile, Mirela}, title = {Subordination theory for holomorphic mappings of several complex variables}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {129-134}, zbl = {0872.32002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm} }
Kohr, Gabriela; Kohr-Ile, Mirela. Subordination theory for holomorphic mappings of several complex variables. Banach Center Publications, Tome 37 (1996) pp. 129-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p129bwm/
[000] [1] B. Chabat, Introduction à l'analyse complexe, tome 2, ed. MIR, Moscou, 1990.
[001] [2] Sh. Gong and S. S. Miller, Partial differential subordinations and inequalities defined on complete circular domain, Comm. Partial Differential Equations, 11 (1986), 1243-1255. | Zbl 0606.32002
[002] [3] G. Kohr and M. Kohr-Ile, Partial differential subordinations and inequalities for holomorphic mappings of several complex variables, Ms., to appear.
[003] [4] P. Liczberski, Jack's Lemma for holomorphic mappings, Ann. Univ. Mariae Curie-Skłodowska, Sect. A, 40 (1986), 131-139. | Zbl 0639.32003
[004] [5] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305. | Zbl 0367.34005
[005] [6] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 20 (1981), 157-171. | Zbl 0439.30015
[006] [7] S. S. Miller and P. T. Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai (Mathematica), 34 (1989), 13-33. | Zbl 0900.30031
[007] [8] T. J. Suffridge, The principle of subordination applied to functions of several variables, Pacific J. Math., 33 (1970), 241-248. | Zbl 0196.09601
[008] [9] T. J. Suffridge, Starlike and convex maps in Banach spaces, Pacific J. Math., 46 (1973), 575-589. | Zbl 0263.30016