In this paper we extend the definition of the linearly invariant family and the definition of the universal linearly invariant family to higher dimensional case. We characterize these classes and give some of their properties. We also give a relationship of these families with the Bloch space.
@article{bwmeta1.element.bwnjournal-article-bcpv37i1p115bwm, author = {Godula, Janusz and Starkov, Victor}, title = {Linearly invariant families of holomorphic functions in the unit polydisc}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {115-127}, zbl = {0868.32008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p115bwm} }
Godula, Janusz; Starkov, Victor. Linearly invariant families of holomorphic functions in the unit polydisc. Banach Center Publications, Tome 37 (1996) pp. 115-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv37i1p115bwm/
[000] [1] Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen, Math. Ann., 155 (1964), 108-154. | Zbl 0128.30105
[001] [2] J. Godula, V. Starkov, Applications of ideas of Möbius invariance to obtaining equivalent definitions of Bloch functions, Annales Univ. Mariae Curia-Skłodowska 49 (1996), 41-58. | Zbl 0918.30018
[002] [3] J. Godula, V. Starkov, Equivalent definitions of universal linearly-invariant familie, Materiały XI Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Łódź, 1990, 34-38.
[003] [4] R.M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc., 12 (1980), 241-267. | Zbl 0416.32010