Orbifold-Hodge numbers of Hilbert schemes
Göttsche, Lothar
Banach Center Publications, Tome 37 (1996), p. 83-87 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208585
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm,
     author = {G\"ottsche, Lothar},
     title = {Orbifold-Hodge numbers of Hilbert schemes},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {83-87},
     zbl = {0878.14004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm}
}
Göttsche, Lothar. Orbifold-Hodge numbers of Hilbert schemes. Banach Center Publications, Tome 37 (1996) pp. 83-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm/

[000] [B-D] V. V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, preprint 1994. | Zbl 0864.14022

[001] [Be] A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782. | Zbl 0537.53056

[002] [D*1] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds I, Nuclear Phys. B 261 (1985), 678-686.

[003] [D*2] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds II, Nuclear Phys. B 274 (1985), 285-314.

[004] [Fo1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 10 (1968), 511-521. | Zbl 0176.18401

[005] [Fo2] J. Fogarty, Algebraic families on an algebraic surface II, Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 96 (1974), 660-687. | Zbl 0299.14020

[006] [Gö1] L. Göttsche, The Betti numbers of the Hilbert schemes of points on a smooth projective surface, Math. Ann. 286 (1990), 193-207. | Zbl 0679.14007

[007] [Gö2] L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer Verlag, Berlin, Heidelberg, New York, 1994. | Zbl 0814.14004

[008] [G-S] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235-245. | Zbl 0789.14002

[009] [H-H] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, Math. Ann. 286 (1990), 255-260. | Zbl 0679.14006

[010] [Re] M. Reid, The MacKay correspondence and the physicists' Euler number, Lecture notes given at Univ. of Utah and at MSRI 1992.

[011] [Ro] S.-S. Roan, Orbifold Euler characteristic, Inst. of Math. Acad. Sinica, preprint 1993.

[012] [V] C. Vafa, Sting vacua and orbifoldized LG Models, Modern Phys. Lett. A 4 (1989), 1169-1185.

[013] [Z] E. Zaslow Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 105 (1993), 306-331.