@article{bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm, author = {G\"ottsche, Lothar}, title = {Orbifold-Hodge numbers of Hilbert schemes}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {83-87}, zbl = {0878.14004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm} }
Göttsche, Lothar. Orbifold-Hodge numbers of Hilbert schemes. Banach Center Publications, Tome 37 (1996) pp. 83-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p83bwm/
[000] [B-D] V. V. Batyrev and D. Dais, Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, preprint 1994. | Zbl 0864.14022
[001] [Be] A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755-782. | Zbl 0537.53056
[002] [D*1] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds I, Nuclear Phys. B 261 (1985), 678-686.
[003] [D*2] L. Dixon, J. Harvey, C. Vafa and E. Witten, Strings on orbifolds II, Nuclear Phys. B 274 (1985), 285-314.
[004] [Fo1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 10 (1968), 511-521. | Zbl 0176.18401
[005] [Fo2] J. Fogarty, Algebraic families on an algebraic surface II, Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 96 (1974), 660-687. | Zbl 0299.14020
[006] [Gö1] L. Göttsche, The Betti numbers of the Hilbert schemes of points on a smooth projective surface, Math. Ann. 286 (1990), 193-207. | Zbl 0679.14007
[007] [Gö2] L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Math. 1572, Springer Verlag, Berlin, Heidelberg, New York, 1994. | Zbl 0814.14004
[008] [G-S] L. Göttsche and W. Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), 235-245. | Zbl 0789.14002
[009] [H-H] F. Hirzebruch and T. Höfer, On the Euler number of an orbifold, Math. Ann. 286 (1990), 255-260. | Zbl 0679.14006
[010] [Re] M. Reid, The MacKay correspondence and the physicists' Euler number, Lecture notes given at Univ. of Utah and at MSRI 1992.
[011] [Ro] S.-S. Roan, Orbifold Euler characteristic, Inst. of Math. Acad. Sinica, preprint 1993.
[012] [V] C. Vafa, Sting vacua and orbifoldized LG Models, Modern Phys. Lett. A 4 (1989), 1169-1185.
[013] [Z] E. Zaslow Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 105 (1993), 306-331.