Intersection-theoretical computations on verlineMg
Faber, Carel
Banach Center Publications, Tome 37 (1996), p. 71-81 / Harvested from The Polish Digital Mathematics Library

In this paper we explore several concrete problems, all more or less related to the intersection theory of the moduli space of (stable) curves, introduced by Mumford [Mu 1].

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208584
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p71bwm,
     author = {Faber, Carel},
     title = {Intersection-theoretical computations on ${verline M}\_{g}$
            },
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {71-81},
     zbl = {0870.14018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p71bwm}
}
Faber, Carel. Intersection-theoretical computations on ${verline M}_{g}$
            . Banach Center Publications, Tome 37 (1996) pp. 71-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p71bwm/

[000] [A-C] E. Arbarello and M. Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171. | Zbl 0625.14014

[001] [BCOV] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, Comm. Math. Phys. 165 (1994), 311-428. | Zbl 0815.53082

[002] [C-H] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Scient. École Norm. Sup. (4) 21 (1988), 455-475. | Zbl 0674.14006

[003] [Fa 1] C. Faber, Chow rings of moduli spaces of curves I: The Chow ring of οverlineM3, Ann. of Math. 132 (1990), 331-419. | Zbl 0721.14013

[004] [Fa 2] C. Faber, Chow rings of moduli spaces of curves II: Some results on the Chow ring of οverlineM4, Ann. of Math. 132 (1990), 421-449. | Zbl 0735.14021

[005] [Fa 3] C. Faber, Some results on the codimension-two Chow group of the moduli space of curves, in: Algebraic Curves and Projective Geometry (eds. E. Ballico and C. Ciliberto), Lecture Notes in Math. 1389, Springer, Berlin, 1988, 66-75.

[006] [Ha] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math. 156, Springer, Berlin, 1970. | Zbl 0208.48901

[007] [Hi 1] F. Hirzebruch, Automorphe Formen und der Satz von Riemann-Roch, in: Symposium Internacional de Topologí a Algebraica (México 1956), Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958, 129-144; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 345-360.

[008] [Hi 2] F. Hirzebruch, Characteristic numbers of homogeneous domains, in: Seminars on analytic functions, vol. II, IAS, Princeton 1957, 92-104; or: Gesammelte Abhandlungen, Band I, Springer, Berlin, 1987, 361-366.

[009] [Ko] M. Kontsevich, Intersection Theory on the Moduli Space of Curves and the Matrix Airy Function, Comm. Math. Phys. 147 (1992), 1-23. | Zbl 0756.35081

[010] [Liu] Qing Liu, Courbes stables de genre 2 et leur schéma de modules, Math. Ann. 295 (1993), 201-222.

[011] [Mu 1] D. Mumford, Towards an enumerative geometry of the moduli space of curves, in: Arithmetic and Geometry II (eds. M. Artin and J. Tate), Progr. Math. 36 (1983), Birkhäuser, 271-328. | Zbl 0554.14008

[012] [Mu 2] D. Mumford, On the Kodaira Dimension of the Siegel Modular Variety, in: Algebraic Geometry-Open Problems (eds. C. Ciliberto, F. Ghione and F. Orecchia), Lecture Notes in Math. 997, Springer, Berlin, 1983, 348-375.

[013] [Wi] E. Witten, Two dimensional gravity and intersection theory on moduli space, in: Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243-310.