Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra
Duchamp, Gérard ; Kim, Sungsoon
Banach Center Publications, Tome 37 (1996), p. 61-70 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208583
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p61bwm,
     author = {Duchamp, G\'erard and Kim, Sungsoon},
     title = {Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {61-70},
     zbl = {0857.20004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p61bwm}
}
Duchamp, Gérard; Kim, Sungsoon. Intertwining spaces associated with q-analogues of the Young symmetrizers in the Hecke algebra. Banach Center Publications, Tome 37 (1996) pp. 61-70. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p61bwm/

[000] [1] G. E. Andrews, The theory of partitions, Addison-Wesley, London, 1976. | Zbl 0371.10001

[001] [2] C. W. Curtis, I. Reiner, Representations theory of finite groups and associative algebras, Interscience, New York, 1962.

[002] [3] R. Dipper and G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), 57-82. | Zbl 0615.20009

[003] [4] G. Duchamp, D. Krob, B. Leclerc, A. Lascoux, T. Scharf, J. Y. Thibon, Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. Res. Inst. Math. Sci. 31 (1995), 179-201. | Zbl 0835.05085

[004] [5] W. Fulton and J. Harris, Representation Theory, a first course, Graduate Texts in Mathematics 129, Springer, New York, 1991. | Zbl 0744.22001

[005] [6] A. Gyoja, A q-analogue of Young symmetrizer, Osaka J. Math. 23 (1986), 841-852. | Zbl 0644.20012

[006] [7] P. N. Hoefsmith, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. Thesis, Univ. of British Columbia, 1974.

[007] [8] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990. | Zbl 0725.20028

[008] [9] G. James, A. Kerber, The Representation Theory of the Symmetric Group, %Cambridge University Press. Encyclopedia of Mathematics and its Application 16, Addison-Wesley, Reading, 1981.

[009] [10] A. A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Institute of Physics and Mathematics of the Academy of Sciences, Lithuanian SSR, USSR, Reports on Mathematical Physics 5 (1974). | Zbl 0288.20014

[010] [11] A. Kerber, Algebraic Combinatorics Via Finite Group Actions, Wissenschaftsverlag, Mannheim, 1991. | Zbl 0726.05002

[011] [12] A. Lascoux and M.-P. Schützenberger, Formulaire Raisonné de fonctions Symétriques, LITP, U.E.R. Maths, Paris VII, Oct. 1985.

[012] [13] A. Lascoux and M.-P. Schützenberger, Le monoide plaxique, Quaderni de 'La ricerca scientifica', No. 109, ROMA, CNR, 1981.

[013] [14] V. F. Molčanov, On matrix elements of irreducible representations of a symmetric group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 21 (1966), No. 1, 52-57.

[014] [15] G. E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra 81 (1983), 258-265. | Zbl 0521.20005

[015] [16] G. E. Murphy, On the Representation theory of the Symmetric Groups and Associated Hecke Algebras, J. Algebra 152 (1992), 492-513. | Zbl 0794.20020

[016] [17] D. E. Rutherford, Substitutional Analysis, University Press, Edinburgh, 1948.