The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm, author = {Thorup, Anders}, title = {Parameter spaces for quadrics}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {199-216}, zbl = {0868.14027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm} }
Thorup, Anders. Parameter spaces for quadrics. Banach Center Publications, Tome 37 (1996) pp. 199-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm/
[000] [1] M. Brion, Groupe de Picard et nombres charactéristique des varietés sphériques, Duke Math. J. 58 (1989), 397-424. | Zbl 0701.14052
[001] [2] E. Casas-Alvero and S. Xambó-Descamps, The enumerative theory of conics after Halphen, Lecture Notes in Math. 1196, Springer-Verlag, 1986. | Zbl 0626.14037
[002] [3] C. De Concini, P. Gianni and C. Procesi, Computation of new Schubert tables for quadrics and projectivities, in: Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, 1985, 515-523.
[003] [4] C. De Concini and C. Procesi, Complete symmetric varieties, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer-Verlag, Berlin, 1983, 1-44.
[004] [5] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), Band 2, Springer-Verlag, Berlin, 1984. | Zbl 0541.14005
[005] [6] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Memorie Reale Istituto Lombardo 19 (1903), 155-194. | Zbl 34.0615.01
[006] [7] G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. | Zbl 0295.14023
[007] [8] S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in: Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math. 28, 1976, 445-482. | Zbl 0336.14001
[008] [9] S. Kleiman, Chasles's enumerative theory of conics: A historical introduction, in: Studies in Algebraic Geometry (A. Seidenberg, ed.), MAA Stud. Math. 20, 1980, 117-138. | Zbl 0444.14001
[009] [10] S. Kleiman and A. Thorup, Intersection theory and enumerative geometry. A decade in review, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 332-338.
[010] [11] D. Laksov, Notes on the evolution of complete correlations, in: Enumerative and Classical Algebraic Geometry, Proceedings Nice 1981 (Le Barz and Hervier, eds.), Progr. Math. 24, Birkhäuser, 1982, 107-132.
[011] [12] D. Laksov, Completed quadrics and linear maps, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 371-387.
[012] [13] D. Laksov, Complete linear maps, Ark. Mat. 26 (1988), 231-263. | Zbl 0681.14034
[013] [14] D. Laksov, A. Lascoux, and A. Thorup, On Giambelli's theorem on complete correlations, Acta Math. 162 (1989), 143-199. | Zbl 0695.14023
[014] [15] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454. | Zbl 0687.14043
[015] [16] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative Algebraic Geometry, Copenhagen, 1989 (S. L. Kleiman and A. Thorup, eds.), Contemp. Math. 123 (1991), 199-211. | Zbl 0759.14043
[016] [17] H. Schubert, Anzahlbestimmungen für lineare Räume beliebiger Dimension, Acta Math. 8 (1886), 97-118.
[017] [18] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206. | Zbl 25.1038.03
[018] [19] H. Schubert, Correlative Verwandtschaft in n Dimensionen, Jahresber. Deutsch. Math.-Verein. 4 (1894/95), 158-160. | Zbl 28.0493.01
[019] [20] A. Thorup, Counting quadrics, under preparation.
[020] [21] A. Thorup and S. Kleiman, Complete bilinear forms, in: Algebraic Geometry, Sundance, 1986 (A. Holme and R. Speiser, eds.), Lecture Notes in Math. 1311, Springer-Verlag, Berlin, 1988, 253-320.