Parameter spaces for quadrics
Thorup, Anders
Banach Center Publications, Tome 37 (1996), p. 199-216 / Harvested from The Polish Digital Mathematics Library

The parameter spaces for quadrics are reviewed. In addition, an explicit formula for the number of quadrics tangent to given linear subspaces is presented.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208578
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm,
     author = {Thorup, Anders},
     title = {Parameter spaces for quadrics},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {199-216},
     zbl = {0868.14027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm}
}
Thorup, Anders. Parameter spaces for quadrics. Banach Center Publications, Tome 37 (1996) pp. 199-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p199bwm/

[000] [1] M. Brion, Groupe de Picard et nombres charactéristique des varietés sphériques, Duke Math. J. 58 (1989), 397-424. | Zbl 0701.14052

[001] [2] E. Casas-Alvero and S. Xambó-Descamps, The enumerative theory of conics after Halphen, Lecture Notes in Math. 1196, Springer-Verlag, 1986. | Zbl 0626.14037

[002] [3] C. De Concini, P. Gianni and C. Procesi, Computation of new Schubert tables for quadrics and projectivities, in: Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, 1985, 515-523.

[003] [4] C. De Concini and C. Procesi, Complete symmetric varieties, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer-Verlag, Berlin, 1983, 1-44.

[004] [5] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), Band 2, Springer-Verlag, Berlin, 1984. | Zbl 0541.14005

[005] [6] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Memorie Reale Istituto Lombardo 19 (1903), 155-194. | Zbl 34.0615.01

[006] [7] G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. | Zbl 0295.14023

[007] [8] S. Kleiman, Problem 15. Rigorous foundation of Schubert's enumerative calculus, in: Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math. 28, 1976, 445-482. | Zbl 0336.14001

[008] [9] S. Kleiman, Chasles's enumerative theory of conics: A historical introduction, in: Studies in Algebraic Geometry (A. Seidenberg, ed.), MAA Stud. Math. 20, 1980, 117-138. | Zbl 0444.14001

[009] [10] S. Kleiman and A. Thorup, Intersection theory and enumerative geometry. A decade in review, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 332-338.

[010] [11] D. Laksov, Notes on the evolution of complete correlations, in: Enumerative and Classical Algebraic Geometry, Proceedings Nice 1981 (Le Barz and Hervier, eds.), Progr. Math. 24, Birkhäuser, 1982, 107-132.

[011] [12] D. Laksov, Completed quadrics and linear maps, in: Algebraic Geometry, Bowdoin, 1985 (Spencer J. Bloch, ed.), Proc. Sympos. Pure Math. 46, Part 2, 1987, 371-387.

[012] [13] D. Laksov, Complete linear maps, Ark. Mat. 26 (1988), 231-263. | Zbl 0681.14034

[013] [14] D. Laksov, A. Lascoux, and A. Thorup, On Giambelli's theorem on complete correlations, Acta Math. 162 (1989), 143-199. | Zbl 0695.14023

[014] [15] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454. | Zbl 0687.14043

[015] [16] C. Procesi and S. Xambó-Descamps, On Halphen's first formula, in: Enumerative Algebraic Geometry, Copenhagen, 1989 (S. L. Kleiman and A. Thorup, eds.), Contemp. Math. 123 (1991), 199-211. | Zbl 0759.14043

[016] [17] H. Schubert, Anzahlbestimmungen für lineare Räume beliebiger Dimension, Acta Math. 8 (1886), 97-118.

[017] [18] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Räume zweiten Grades in n Dimensionen, Math. Ann. 45 (1894), 153-206. | Zbl 25.1038.03

[018] [19] H. Schubert, Correlative Verwandtschaft in n Dimensionen, Jahresber. Deutsch. Math.-Verein. 4 (1894/95), 158-160. | Zbl 28.0493.01

[019] [20] A. Thorup, Counting quadrics, under preparation.

[020] [21] A. Thorup and S. Kleiman, Complete bilinear forms, in: Algebraic Geometry, Sundance, 1986 (A. Holme and R. Speiser, eds.), Lecture Notes in Math. 1311, Springer-Verlag, Berlin, 1988, 253-320.