Elementary introduction to representable functors and Hilbert schemes
Strømme, Stein
Banach Center Publications, Tome 37 (1996), p. 179-198 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to define and prove the existence of the Hilbert scheme. This was originally done by Grothendieck in [4]. A simplified proof was given by Mumford [11], and we will basically follow that proof, with small modifications.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:208577
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p179bwm,
     author = {Str\o mme, Stein},
     title = {Elementary introduction to representable functors and Hilbert schemes},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {179-198},
     zbl = {0877.14002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p179bwm}
}
Strømme, Stein. Elementary introduction to representable functors and Hilbert schemes. Banach Center Publications, Tome 37 (1996) pp. 179-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p179bwm/

[000] [Baye] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University, May 1982.

[001] [Gotz] G. Gotzmann, Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes, Math. Z. 158 (1978), 61-70. | Zbl 0352.13009

[002] [Gree] M. Green, Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann, in: Algebraic curves and projective geometry, Proceedings, Trento 1988, Lecture Notes in Math. 1389, Springer, Berlin, 1988.

[003] [Grot-1] A. Grothendieck, Techniques de construction et théorémes d'existence en géométrie algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki 221, 1960/61.

[004] [Hart-2] R. Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 261-309.

[005] [AG] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52, Springer, Berlin, Tokyo, New York, 1977.

[006] [Klei-2] S. L. Kleiman, Geometry of grassmannians and applications to splitting bundles and smoothing cycles, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281-297, volume dedicated to Oscar Zariski. | Zbl 0208.48501

[007] [Laud] O. A. Laudal, Formal Moduli of Algebraic Structures, Lecture Notes in Math. 754 Springer, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1979.

[008] [Mori] S. Mori, Projective manifolds with ample tangent bundles. Ann. of Math. (2) 110 (1979), 593-606. | Zbl 0423.14006

[009] [Mumf-3] D. Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642-648. | Zbl 0114.13106

[010] [Mumf-1] D. Mumford, Lectures on Curves on an Algebraic Surface, Studies in Mathematics 59, Princeton University Press, 1968.

[011] [Red] D. Mumford, The red book of varieties and schemes, Lecture Notes in Math. 1358, Springer, Berlin-Heidelberg-New York-London-Paris-Tokyo, 1988. | Zbl 0658.14001

[012] [Schl-1] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | Zbl 0167.49503