The goal of this paper is at least two-fold. First we attempt to give a survey of some recent (and developed up to the time of the Banach Center workshop Parameter Spaces, February '94) applications of the theory of symmetric polynomials and divided differences to intersection theory. Secondly, taking this opportunity, we complement the story by either presenting some new proofs of older results (and this takes place usually in the Appendices to the present paper) or providing some new results which arose as by-products of the author's work in this domain during last years.
@article{bwmeta1.element.bwnjournal-article-bcpv36z1p125bwm, author = {Pragacz, Piotr}, title = {Symmetric polynomials and divided differences in formulas of intersection theory}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {125-177}, zbl = {0851.05094}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p125bwm} }
Pragacz, Piotr. Symmetric polynomials and divided differences in formulas of intersection theory. Banach Center Publications, Tome 37 (1996) pp. 125-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv36z1p125bwm/
[000] [A-C] E. Akyildiz, J. B. Carrell, An algebraic formula for the Gysin homomorphism from G/B to G/P, Illinois J. Math. 31 (1987), 312-320. | Zbl 0629.57030
[001] [A-L-P] E. Akyildiz, A. Lascoux, P. Pragacz, Cohomology of Schubert subvarieties of , J. Differential Geom. 35 (1992), 511-519.
[002] [B-G-G] I. N. Bernstein, I. M. Gel'fand, S. I. Gel'fand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surv. 28 (1973), 1-26.
[003] [Bou] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Herrmann, Paris, 1968.
[004] [B] W. Bruns, Die Divisorenklassengruppe der Restklassenringe von Polynomringen nach Determinantenidealen, Rev. Roumaine Math. Pures Appl. 20 (1975) 1109-1111. | Zbl 0347.13008
[005] [Ch] C. Chevalley, Sur les Décompositions Cellulaires des Espaces G/B, Proc. Sympos. Pure Math. 56(1) (1994), 1-23.
[006] [DC-P] C. De Concini, P. Pragacz, On the class of Brill-Noether loci for Prym varieties, Math. Ann. 302 (1995), 687-697. | Zbl 0829.14021
[007] [D-P-S] J. P. Demailly, T. Peternell, M. Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), 295-345. | Zbl 0827.14027
[008] [D1] M. Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. | Zbl 0269.22010
[009] [D2] M. Demazure, Désingularisation des variétés de Schubert géneralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88. | Zbl 0312.14009
[010] [F1] W. Fulton, Intersection Theory, Springer-Verlag, 1984.
[011] [F2] W. Fulton, Flags, Schubert polynomials, degeneracy loci and determinantal formulas, Duke Math. J. 65 (1992), 381-420. | Zbl 0788.14044
[012] [F-L] W. Fulton, R. Lazarsfeld, Positive polynomials for ample vector bundles, Ann. of Math. (2) 118 (1983), 35-60. | Zbl 0537.14009
[013] [G-V] I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985), 300-321. | Zbl 0579.05004
[014] [G1] G. Z. Giambelli, Risoluzione del problema degli spazi secanti, Mem. Accad. Sci. Torino (2) 52 (1903), 171-211. | Zbl 34.0615.02
[015] [G2] G. Z. Giambelli, Il problema della correlazione negli iperspazi, Mem. Reale Istituto Lombardo 19 (1903), 155-194.
[016] [G3] G. Z. Giambelli, Ordine della varietà rappresentata coll'annullare tutti i minori di dato ordine estratti da una data matrice di forme, Acc. Nazion. dei Lincei, Roma, Classe di Science Fis., Mat. e Nat., Rendiconti 12 (1903), 294-297. | Zbl 34.0616.01
[017] [G4] G. Z. Giambelli, Ordine di una varieta piu ampia di quella rappresentata coll'annulare tutti i minori di dato ordine, Memorie Reale Istituto Lombardo 20 (1904), 101-135.
[018] [G5] G. Z. Giambelli, Risoluzione del problema generale numerativo per gli spazi plurisecanti di una curva algebrica, Mem. Accad. Sci. Torino (2) 59 (1909), 433-508. | Zbl 40.0612.04
[019] [H-T1] J. Harris, L. Tu, On symmetric and skew-symmetric determinantal varieties, Topology 23 (1984), 71-84. | Zbl 0534.55010
[020] [H-T2] J. Harris, L. Tu, Chern numbers of kernel and cokernel bundles, Invent. Math. 75 (1984), 467-475. | Zbl 0542.14015
[021] [Ha] R. Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63-94. | Zbl 0173.49003
[022] [He-T] J. Herzog, Ngô Viêt Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv. Math. 96 (1992), 1-37.
[023] [H-B] H. Hiller, B. Boe, Pieri formula for and , Adv. Math. 62 (1986), 49-67.
[024] [H] F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der Math. Wissenschaften, Springer-Verlag, 1966; also Collected Papers, vol. I, Springer-Verlag, 1987, 151-334.
[025] [H-H] P. N. Hoffman, J. F. Humphreys, Projective representations of symmetric groups, Oxford University Press, 1992. ßk | Zbl 0777.20005
[026] [J-L] C. G. Jacobi, A. Lascoux, De quibusdam rationibus universalibus ad determinantia functionalia expedienda, an unpublished manuscript. ßk
[027] [J-L-P] T. Józefiak, A. Lascoux, P. Pragacz, Classes of determinantal varieties associated with symmetric and antisymmetric matrices (in Russian), Izv. Akad. Nauk SSSR 45 (1981), 662-673. | Zbl 0471.14028
[028] [K-L] G. Kempf, D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974), 153-162. | Zbl 0295.14023
[029] [La] D. Laksov, Remarks on Giovanni Zeno Giambelli's work and life, Rend. Circ. Mat. Palermo (2) Suppl. 36 (1994), 207-218. | Zbl 0926.01007
[030] [L-L-P-T] D. Laksov, A. Lascoux, P. Pragacz, A. Thorup, a book in preparation.
[031] [La-La-T] D. Laksov, A. Lascoux, A. Thorup, On Giambelli's theorem for complete correlations, Acta Math. 162 (1989), 143-199. | Zbl 0695.14023
[032] [L1] A. Lascoux, Puissances extérieures, déterminants et cycles de Schubert, Bull. Soc. Math. France 102 (1974), 161-179. | Zbl 0295.14024
[033] [L2] A. Lascoux, Classes de Chern d'un produit tensoriel, C. R. Acad. Sci. Paris Sér. I Math. 286 (1978), 385-387. | Zbl 0379.55011
[034] [L3] A. Lascoux, La résultante de deux polynômes, in: Séminaire d'Algèbre Dubreil-Malliavin 1985 (M.-P. Malliavin, ed.), Lecture Notes in Math. 1220,Springer, 1986, 56-72.
[035] [L4] A. Lascoux, Interpolation de Lagrange, in: Second International Symposium (Segovia 1986) 'On Orthogonal Polynomials and their Applications', Monograf. Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza 1 (1988), 95-101.
[036] [L5] A. Lascoux, Classes de Chern des variétés de drapeaux, C. R. Acad. Sci. Paris 25 (1982), 393-398. | Zbl 0495.14032
[037] [L6] A. Lascoux, Polynômes de Schubert; une approche historique, Discrete Math. 139 (1995), 303-317.
[038] [La-Le-T1] A. Lascoux, B. Leclerc, J.-Y. Thibon, Une nouvelle expression de functions P de Schur, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 221-224.
[039] [La-Le-T2] A. Lascoux, B. Leclerc, J.-Y. Thibon, Fonctions de Hall-Littlewood et polynômes de Kostka-Foulkes aux racines de l'unité, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 1-6. | Zbl 0769.05095
[040] [L-P] A. Lascoux, P. Pragacz, Divided differences and ideals generated by symmetric polynomials, Discrete Math. 126 (1994), 209-215. | Zbl 0789.05094
[041] [L-S1] A. Lascoux, M.-P. Schützenberger, Formulairé raisonné des functions symétriques, Prepublication L.I.T.P., Université Paris 7, 1985.
[042] [L-S2] A. Lascoux, M.-P. Schützenberger, Symmetry and flag manifolds, in: Invariant Theory (F. Gherardelli, ed.), Lecture Notes in Math. 996, Springer, 1983, 118-144.
[043] [L-S3] A. Lascoux, M.-P. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 447-450.
[044] [L-S4] A. Lascoux, M.-P. Schützenberger, Symmetrizing operators on polynomial rings, Functional Anal. Appl. 21 (1987), 77-78.
[045] [L-S5] A. Lascoux, M.-P. Schützenberger, Décompositions dans l'algèbre des differences divisées, Discrete Math. 99 (1992), 165-179.
[046] [L-S6] A. Lascoux, M.-P. Schützenberger, Schubert and Grothendieck polynomials, Notes of the talk given by the first author at Moscow University (November 1987), Preprint L.I.T.P., 1988.
[047] [M1] I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1979.
[048] [M2] I. G. Macdonald, Notes on Schubert polynomials, Publ. LACIM 6, UQUAM, Montréal, 1991.
[049] [Ma] L. Manivel, Un théoreme d'annulation 'à la Kawamata-Viehweg', Manuscripta Math. 83 (1994), 387-404. | Zbl 0820.14012
[050] [Na] V. Navarro Aznar, On the Chern classes and the Euler characteristic for nonsingular complete intersections, Proc. Amer. Math. Soc. 78 (1980), 143-148. | Zbl 0473.14020
[051] [N] I. Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687.
[052] [Ni] H. A. Nielsen, Tensor Functors of Complexes, Aarhus Univ. Preprint 15, 1977/78.
[053] [P-P1] A. Parusiński, P. Pragacz, Characteristic numbers of degeneracy loci, in: Enumerative Algebraic Geometry (Copenhagen, 1989), (S. Kleiman, A. Thorup, eds.) Contemp. Math. 123 (1991), 189-197. | Zbl 0756.32019
[054] [P-P2] A. Parusiński, P. Pragacz, Chern-Schwartz-MacPherson classes and the Euler characteristic of degeneracy loci and special divisors, J. Amer. Math. Soc. 8 (1995), 793-817. | Zbl 0857.14003
[055] [Po] I. R. Porteous, Simple singularities of maps, in: Proceedings of Liverpool Singularities Symposium I, Lecture Notes in Math. 192, Springer, 1971, 286-307.
[056] [P1] P. Pragacz, Determinantal varieties and symmetric polynomials, Functional Anal. Appl. 21 (1987), 249-250. | Zbl 0633.14029
[057] [P2] P. Pragacz, A note on elimination theory, Indag. Math. (N.S.) 49 (1987), 215-221. | Zbl 0632.12002
[058] [P3] P. Pragacz, Enumerative geometry of degeneracy loci, Ann. Sci. École Norm. Sup. (4) 21 (1988), 413-454. | Zbl 0687.14043
[059] [P4] P. Pragacz, Algebro-geometric applications of Schur S- and Q-polynomials, in: Topics in Invariant Theory -- Séminaire d'Algèbre Dubreil-Malliavin 1989-1990 (M.-P. Malliavin, ed.), Lecture Notes in Math. 1478, Springer, 1991, 130-191.
[060] [P5] P. Pragacz, Cycles of isotropic subspaces and formulas for symmetric degeneracy loci, Topics in Algebra, Banach Center Publ. 26(2), 1990, 189-199. | Zbl 0743.14009
[061] [P-R1] P. Pragacz, J. Ratajski, Polynomials homologically supported on degeneracy loci, Preprint of the University of Bergen No. 61, 1991; to appear in: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4). | Zbl 0876.14014
[062] [P-R2] P. Pragacz, J. Ratajski, Pieri type formula for isotropic Grassmannians; the operator approach, Manuscripta Math. 79 (1993), 127-151. | Zbl 0789.14041
[063] [P-R3] P. Pragacz, J. Ratajski, A Pieri-type formula for Sp(2m)/P and SO(2m+1)/P, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1035-1040. | Zbl 0812.14034
[064] [P-R4] P. Pragacz, J. Ratajski, A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians, Preprint of the Max-Planck Institut für Mathematik 94-15, 1994; to appear in J. Reine Angew. Math. | Zbl 0847.14029
[065] [P-R5] P. Pragacz, J. Ratajski, Formulas for Lagrangian and orthogonal degeneracy loci; the -polynomials approach, Preprint of the Max-Planck Institut für Mathematik, 1994, alg-geom/9602019; to appear in Compositio Math.
[066] [P-T] P. Pragacz, A. Thorup, On a Jacobi-Trudi formula for supersymmetric polynomials, Adv. Math. 95 (1992), 8-17. | Zbl 0774.05101
[067] [R] J. Ratajski, Thesis, Math. Inst. Polish Acad. Sci., Warsaw, 1995.
[068] [Se] S. Sertöz, A triple intersection theorem for the varieties , Fund. Math. 142 (1993), 201-220. | Zbl 0837.14040
[069] [S] H. Schubert, Allgemeine Anzahlfunctionen für Kegelschnitte, Flächen und Raüme zweiten Grades in Dimensionen, Math. Ann. 45 (1894), 153-206. | Zbl 25.1038.03
[070] [T] R. Thom, Les ensembles singuliers d'une application différentiable et leurs propriétés homologiques, in: Seminaire de Topologie de Strasbourg, December 1957.
[071] [Th] A. Thorup, Parameter spaces for quadrics, in this volume.
[072] [Tu] L. Tu, Degeneracy loci, Proceedings of the International Conference on Algebraic Geometry (Berlin 1985), Teubner Verlag, Leipzig, 1986, 296-305.