Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows
Bartsch, Thomas
Banach Center Publications, Tome 37 (1996), p. 9-27 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:251325
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p9bwm,
     author = {Bartsch, Thomas},
     title = {Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {9-27},
     zbl = {0864.58008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p9bwm}
}
Bartsch, Thomas. Bifurcation of stationary and heteroclinic orbits for parametrized gradient-like flows. Banach Center Publications, Tome 37 (1996) pp. 9-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p9bwm/

[000] [Ba1] T. Bartsch, On the genus of representation spheres, Comment. Math. Helv. 65 (1990), 85-95. | Zbl 0704.57024

[001] [Ba2] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Math. 1560, Springer, Berlin Heidelberg 1993.

[002] [Ba3] T. Bartsch, A generalization of the Weinstein-Moser theorems on periodic orbits of a Hamiltonian system near an equilibrium, preprint, Heidelberg 1994.

[003] [Ba4] T. Bartsch, Bifurcation theorey for nonlinear eigenvalue problems, in preparation.

[004] [BaC] T. Bartsch and M. Clapp, Bifurcation theory for symmetric potential operators and the equivariant cup-length, Math. Z. 204 (1990), 341-356. | Zbl 0682.58037

[005] [Be] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Commun. Pure Appl. Math. 34 (1981), 393-432. | Zbl 0447.34040

[006] [Bö] R. Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105-126. | Zbl 0254.47082

[007] [CaS] S. E. Capell and J. L. Shaneson, Nonlinear similarity, Ann. of Math. 113 (1981), 315-355.

[008] [Co] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, Regional Conf. Ser. in Math. 38, AMS Providence, R.I., 1978.

[009] [CZ] C. Conley and E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian systems, Comm. Pure Appl. Math. 37 (1984), 207-253. | Zbl 0559.58019

[010] [tD] T. tom Dieck, Transformation Groups, de Gruyter, Berlin 1987.

[011] [D] A. Dold, Lectures on Algebraic Topology, Grundlehren der math. Wiss. 200, Springer, Berlin Heidelberg 1980.

[012] [FR1] E. Fadell and P. H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal. 26 (1977), 48-67. | Zbl 0363.47029

[013] [FR2] E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math. 45 (1978), 139-174. | Zbl 0403.57001

[014] [K] M. A. Krasnoselski, On special coverings of a finite-dimensional sphere, Dokl. Akad. Nauk SSSR 103 (1955), 966-969 (in Russian).

[015] [Ma] A. Marino, La biforcazione nel caso variationale, Confer. Sem. Mat. Univ. Bari 132 (1977).

[016] [MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York 1989.

[017] [R1] P. H. Rabinowitz, A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424. | Zbl 0369.47038

[018] [R2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, Regional Conf. Ser. in Math. 65, AMS, Providence, R.I., 1986.

[019] [Sa] D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1-41. | Zbl 0573.58020

[020] [Sp] E. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.

[021] [Y] C. T. Yang, On the theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujòbô and Dyson, Ann. Math. 60 (1954), 262-282. | Zbl 0057.39104