On minimizing noncoercive functionals on weakly vlosed sets
Le, Vy ; Schmitt, Klaus
Banach Center Publications, Tome 37 (1996), p. 51-72 / Harvested from The Polish Digital Mathematics Library

We consider noncoercive functionals on a reflexive Banach space and establish minimization theorems for such functionals on smooth constraint manifolds. The functionals considered belong to a class which includes semi-coercive, compact-coercive and P-coercive functionals. Some applications to nonlinear partial differential equations are given.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:251315
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p51bwm,
     author = {Le, Vy and Schmitt, Klaus},
     title = {On minimizing noncoercive functionals on weakly vlosed sets},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {51-72},
     zbl = {0855.35049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p51bwm}
}
Le, Vy; Schmitt, Klaus. On minimizing noncoercive functionals on weakly vlosed sets. Banach Center Publications, Tome 37 (1996) pp. 51-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p51bwm/

[000] [ASV1] D. D. Ang, K. Schmitt and L. K. Vy, Noncoercive variational inequalities: some applications, Nonlinear Analysis, TMA 15(1990), 497-512. | Zbl 0735.49007

[001] [ASV2] D. D. Ang, K. Schmitt and L. K. Vy, Variational inequalities and the contact of elastic plates, in: Differential Equations and Applications in Biology, Physics, and Engineering, Goldstein, Kappel, Schappacher (eds.), M. Dekker, N.Y., 1991,1-19. | Zbl 0761.35038

[002] [ASV3] D.D. Ang, K. Schmitt and L. K. Vy, P-coercive variational inequalities and unilateral problems for von Karman's equations, in: World Scientific Series in Applied Math., vol. 1, R. Agarwal (ed.), World Scientific, Singapore, 1992,15-29. | Zbl 0830.49011

[003] [AV] D. D. Ang and L. K. Vy, Some applications and extensions of P-coercive variational inequalities, preprint(1993).

[004] [BGT] G. Baiocchi, F. Gastaldi and F. Tomarelli, Inéquations variationnelles non coercives, C. R. Acad. Sc. Paris 299 (1984), 647-650.

[005] [BTW] A. Ben Naoum, C. Troestler and M. Willem, Existence and multiplicity results for homogeneous second order differential equations, J. Diff. Equations 112 (1994), 239-249. | Zbl 0808.58013

[006] [B] V. Brézis, Analyse Fonctionnelle, Masson, Paris 1983.

[007] [DL] G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. | Zbl 0298.73001

[008] [F] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Mem. Acc. Naz. Lincei, Ser. 8 vol 7 (1964), 91-140. | Zbl 0146.21204

[009] [GT] F. Gastaldi and F. Tomarelli, Some remarks on nonlinear and noncoercive variational inequalities, Boll. U. M. I. (7) 1-B (1987), 143-165. | Zbl 0624.47053

[010] [H] P. Hess, On nonlinear mappings of monotone type with respect to Banach spaces, Ind. Univ. Math. J. 23 (1974), 645-654. | Zbl 0259.47051

[011] [J] R. C. James, Orthogonality and linear functionals in normed spaces, Trans. Amer. Math. Soc. 61 (1947), 265-292.

[012] [KS] D. Kinderlehrer and G. Stampacchia, Introduction to Variational Inequalities, Academic Press, New York, 1980.

[013] [K] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, New York, 1964.

[014] [LS] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519. | Zbl 0152.34601

[015] [LS1] V. K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject to constraints, Trans. A. M. S. 347 (1995), 4485-4513. | Zbl 0849.35040

[016] [LS2] V. K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject to constraints II, Advances in Diff. Eq., to appear. | Zbl 1020.35025

[017] [MW] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. | Zbl 0676.58017

[018] [PS] D. Pascali and J. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff and Noordhoff, Bucharest, 1978.

[019] [PM] M. A. del Pino and R. F. Manasevich, Global bifurcation from the eigenvalues of the p-Laplacian, J. Diff. Equations 92 (1991), 226-251. | Zbl 0781.35017

[020] [R] T. R. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970. | Zbl 0193.18401

[021] [S] M. Schatzman, Problèmes aux limites non linéaires semi-coercifs, C. R. Acad. Sc. Paris 275 (1972), 1305-1308. | Zbl 0246.47062

[022] [St] M. Struwe, Variational Methods and their Applications in Nonlinear Partial Differential Equations, Springer, New York, 1990.

[023] [T] S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 37 (1971), 173-180. | Zbl 0214.12701