In this paper, we are concerned with the semilinear parabolic equation ∂u/∂t - Δu = g(t,x,u) if u = 0 if , where is a bounded domain with smooth boundary ∂Ω and is T-periodic with respect to the first variable. The existence and the multiplicity of T-periodic solutions for this problem are shown when g(t,x,ξ)/ξ lies between two higher eigenvalues of - Δ in Ω with the Dirichlet boundary condition as ξ → ±∞.
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p39bwm, author = {Hirano, Norimichi and Mizoguchi, Noriko}, title = {Existence of periodic solutions for semilinear parabolic equations}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {39-49}, zbl = {0851.35068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p39bwm} }
Hirano, Norimichi; Mizoguchi, Noriko. Existence of periodic solutions for semilinear parabolic equations. Banach Center Publications, Tome 37 (1996) pp. 39-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p39bwm/
[000] [1] N. D. Alikakos, P. Hess and H. Matano, Discrete order preserving semigroups and stability for periodic parabolic differential equaitons, J, Diff. Eq. 82 (1989), 322-341. | Zbl 0698.35075
[001] [2] H. Amann, Periodic solutions for semi-linear parabolic equations, in 'Nonlinear Analysis: A Collection of Papers in Honor of Erich Rothe', Academic Press, New York, 1978, 1-29.
[002] [3] A. Beltramo and P. Hess, On the principal eigenvalue of a periodic-parabolic operator, Comm. Part. Diff. Eq. 9 (1984), 919-941. | Zbl 0563.35033
[003] [4] A. Castro and A. Lazer, Critical point theory and the number of solutions of a Dirichlet problem, Ann. Math. Pure Appl. 70 (1979), 113-137. | Zbl 0426.35038
[004] [5] D. Henry, Geometric theory of semilinear parabolic equaitons, Lecture Notes in Math. 840, Springer-Verlag, New York, 1981.
[005] [6] P. Hess, On positive solutions of semilinear periodic-parabolic problems in infinite-dimensional systems, ed. Kappel-Schappacher, Lecture Notes in Math. 1076 (1984), 101-114.
[006] [7] N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc. 106 (1989), 107-114. | Zbl 0729.35006
[007] [8] N. Hirano, Existence of nontrivial solutions of semilinear elliptic equaitons, Nonlinear Anal. 13 (1989), 695-705. | Zbl 0735.35055
[008] [9] N. Hirano, Existence of unstable periodic solutions for semilinear parabolic equations, to appear in Nonlinear Analysis. | Zbl 0814.35058
[009] [10] M. W. Hirsch, Differential equations and convergence almost everywhere in strongly monotone semiflows, Contemporary Math. 17 (1983), 267-285. | Zbl 0523.58034
[010] [11] J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979), 601-612. | Zbl 0419.34061
[011] [12] I. I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), 653-661. | Zbl 0701.34074