@article{bwmeta1.element.bwnjournal-article-bcpv35i1p29bwm, author = {Benci, Vieri and Abbondandolo, Alberto}, title = {Rotation numbers for Lagrangian systems and Morse theory}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {29-38}, zbl = {0851.58017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p29bwm} }
Benci, Vieri; Abbondandolo, Alberto. Rotation numbers for Lagrangian systems and Morse theory. Banach Center Publications, Tome 37 (1996) pp. 29-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p29bwm/
[000] [1] A. Abbondandolo, A rotation number for invariant measures and Morse theory, (to appear).
[001] [2] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov 90 (1967), 1-235. | Zbl 0176.19101
[002] [3] V. I. Arnol'd, Characteristic class entering in quantization conditions,Functional Anal. Appl. 1 (1967), 1-14.
[003] [4] V. Benci, A new approach to Morse-Conley Theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231-305. | Zbl 0778.58011
[004] [5] V. Benci and D. Fortunato, Periodic solutions of asymptotically linear dinamical systems, Nonlinear Diff. Eq. and Appl. (to appear). | Zbl 0821.34037
[005] [6] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9(1956), 176-206. | Zbl 0074.17202
[006] [7] K. C. Chang, Infinite dimensional Morse theory and multiple solutions problems, Boston-Basel: Birkhauser 1993.
[007] [8] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253. | Zbl 0559.58019
[008] [9] I. Ekeland, Convexity methods in Hamiltonian mechanics, Berlin Heidelberg New York: Springer-Verlag 1990. | Zbl 0707.70003
[009] [10] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proceedings for Symposia in Pure Math. 45, 395-423.
[010] [11] R. Mañé, Ergodic Theory and Differentiable Dynamics, Berlin Heidelberg New York: Springer-Verlag 1987. | Zbl 0616.28007
[011] [12] J. L. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, New York: Springer-Verlag 1989. | Zbl 0676.58017
[012] [13] M. Vigué-Poirrier and D. Sullivan, The homology theory for the closed geodesic problem, J. Differential Geom. 11(1976), 633-644. | Zbl 0361.53058