Equilibria and Stability in Set-Valued Analysis: a Viability Approach
Saint-Pierre, Patrick
Banach Center Publications, Tome 37 (1996), p. 243-255 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:251323
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p243bwm,
     author = {Saint-Pierre, Patrick},
     title = {Equilibria and Stability in Set-Valued Analysis: a Viability Approach},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {243-255},
     zbl = {0921.47042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p243bwm}
}
Saint-Pierre, Patrick. Equilibria and Stability in Set-Valued Analysis: a Viability Approach. Banach Center Publications, Tome 37 (1996) pp. 243-255. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p243bwm/

[000] [1] J.-P Aubin and Byrnes, Lyapunov functions Associated with Attractors of Differential Inclusions. Cahier de Mathématiques de la Décision, (to appear).

[001] [2] J.-P Aubin and H. Frankowska, Set-valued analysis, Birkhaüser, 1992.

[002] [3] J.-P Aubin, Viability Theory, Birkhaüser, 1992.

[003] [4] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Some Algorithms for Differential Games with two Players and one Target. To appear in Journal of Mathematical Systems, Estimation and Control, 1994.

[004] [5] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Temps optimaux pour des problèmes avec contraintes et sans contrôlabilité locale, C. R. A. S. 318 (1994), 607-612.

[005] [6] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Temps optimaux pour des problèmes avec contraintes et sans contrôlabilité locale (to appear).

[006] [7] P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Differential Games with state-constraints, Cahier de Mathématiques de la Décision, 1995.

[007] [8] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control and Optimization 31 (1) (1995), 257-272. | Zbl 0796.49024

[008] [9] M. Quincampoix and P. Saint-Pierre, An Algorithm for Viability Kernels in Hölderian case: Approximation by Discrete Dynamical Systems, (& M. Quincampoix), Journal of Mathematical Systems, Estimation and Control 1993.

[009] [10] P. Saint-Pierre, Discrete Approximation of the Viability Kernel, Applied Mathematics and Optimisation 29, 187-209.