The aim of this paper is to give the proofs of those results that in [4] were only announced, and, at the same time, to propose some possible developments, indicating some of the most significant open problems.
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p237bwm,
author = {Ricceri, Biagio},
title = {On a variational property of integral functionals and related conjectures},
journal = {Banach Center Publications},
volume = {37},
year = {1996},
pages = {237-242},
zbl = {0867.49030},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p237bwm}
}
Ricceri, Biagio. On a variational property of integral functionals and related conjectures. Banach Center Publications, Tome 37 (1996) pp. 237-242. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p237bwm/
[000] [1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons, 1984. | Zbl 0641.47066
[001] [2] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys 15, Amer. Math. Soc., 1977. | Zbl 0369.46039
[002] [3] B. Ricceri, Structure, approximation et dépendance continue des solutions de certaines équations non linéaires, C. R. Acad. Sci. Paris, Série I, 305 (1987), 45-47.
[003] [4] B. Ricceri, A variational property of integral functionals on -spaces of vector-valued functions, C. R. Acad. Sci. Paris, Série I, 318 (1994), 337-342.