The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order
Idczak, Dariusz
Banach Center Publications, Tome 37 (1996), p. 221-236 / Harvested from The Polish Digital Mathematics Library

In the paper, the generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order is proved. Some application of this theorem to the coercive Dirichlet problem is given.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:251316
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm,
     author = {Idczak, Dariusz},
     title = {The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {221-236},
     zbl = {0868.49015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm}
}
Idczak, Dariusz. The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order. Banach Center Publications, Tome 37 (1996) pp. 221-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm/

[000] [1] D. Idczak and S. Walczak, On the existence of a solution for some distributed optimal control hyperbolic system, to appear in International Journal of Mathematics and Mathematical Sciences, University of Central Florida. | Zbl 0959.49004

[001] [2] L. A. Lusternik and W. I. Sobolew, Elements of Functional Analysis, Warsaw 1959, (Polish).

[002] [3] J. Mawhin, Problèmes de Dirichlet Variationnels Non-Linéaires, L'Université de Montréal, 1987.

[003] [4] S. Walczak, On some generalization of the fundamental lemma and its application to differential equations, Bull. Soc. Math. Belg. 45(3) ser. B (1993). | Zbl 0802.34007

[004] [5] S. Walczak, On the Du Bois-Reymond lemma for functions of several variables, ibid. | Zbl 0809.49004