In the paper, the generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order is proved. Some application of this theorem to the coercive Dirichlet problem is given.
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm, author = {Idczak, Dariusz}, title = {The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {221-236}, zbl = {0868.49015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm} }
Idczak, Dariusz. The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order. Banach Center Publications, Tome 37 (1996) pp. 221-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p221bwm/
[000] [1] D. Idczak and S. Walczak, On the existence of a solution for some distributed optimal control hyperbolic system, to appear in International Journal of Mathematics and Mathematical Sciences, University of Central Florida. | Zbl 0959.49004
[001] [2] L. A. Lusternik and W. I. Sobolew, Elements of Functional Analysis, Warsaw 1959, (Polish).
[002] [3] J. Mawhin, Problèmes de Dirichlet Variationnels Non-Linéaires, L'Université de Montréal, 1987.
[003] [4] S. Walczak, On some generalization of the fundamental lemma and its application to differential equations, Bull. Soc. Math. Belg. 45(3) ser. B (1993). | Zbl 0802.34007
[004] [5] S. Walczak, On the Du Bois-Reymond lemma for functions of several variables, ibid. | Zbl 0809.49004