@article{bwmeta1.element.bwnjournal-article-bcpv35i1p149bwm, author = {Cardaliaguet, Pierre and Plaskacz, S\l awomir}, title = {Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {149-158}, zbl = {0856.90150}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p149bwm} }
Cardaliaguet, Pierre; Plaskacz, Sławomir. Viability and invariance for differential games with applications to Hamilton-Jacobi-Isaacs equations. Banach Center Publications, Tome 37 (1996) pp. 149-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p149bwm/
[000] [1] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, Basel, Berlin (1991).
[001] [2] J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag (1984). | Zbl 0538.34007
[002] [3] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin (1990).
[003] [4] P. Cardaliaguet, Domaines discriminant en jeux différentiels, Ph.D. Thesis, Université Paris Dauphine (1992).
[004] [5] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282, 487-502. | Zbl 0543.35011
[005] [6] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
[006] [7] R. J. Elliott and N. J. Kalton, The existence of value in differential games, Mem. Amer. Math. Soc. 126 (1972). | Zbl 0244.90046
[007] [8] L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Univ. Math. J. 33 (1984), 773-797. | Zbl 1169.91317
[008] [9] H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations, SIAM J. Control And Optimization 31 (1993), 257-272. | Zbl 0796.49024
[009] [10] H. Frankowska and S. Plaskacz, A measurable - upper semicontinuous viability theorem for tubes, Nonlinear Analysis TMA. (to appear). | Zbl 0838.34017
[010] [11] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Théorèmes de viabilité mesurables et l'équation d'Hamilton-Jacobi-Bellman, Comptes-Rendus de l'Académie des Sciences, Paris, Série 1 (1992).
[011] [12] H. Frankowska, S. Plaskacz and T. Rzeżuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation, J. Diff. Eqs. 116 (1995), 265-305. | Zbl 0836.34016
[012] [13] R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. of Oper. Res. 6 (1981), 424-436. | Zbl 0492.90073
[013] [14] E. Roxin, The axiomatic approach in differential games, J. Optim. Theory Appl. 3 (1969), 153-163. | Zbl 0175.10504
[014] [15] P. P. Varaiya, The existence of solutions to a diffrential game, SIAM J. Control Optim. 5 (1967), 153-162. | Zbl 0154.09901