A brief account of the connections between Carathéodory multifunctions, Scorza-Dragoni multifunctions, product-measurable multifunctions, and superpositionally measurable multifunctions of two variables is given.
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p119bwm, author = {Appell, J\"urgen}, title = {Multifunctions of two variables: examples and counterexamples}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {119-128}, zbl = {0865.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p119bwm} }
Appell, Jürgen. Multifunctions of two variables: examples and counterexamples. Banach Center Publications, Tome 37 (1996) pp. 119-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p119bwm/
[000] [1] J. Appell, E. De Pascale, H. T. Nguyêñ and P. P. Zabreĭko, Multi-valued superpositions, Dissertationes Mathematicae 345 (1995). | Zbl 0855.47037
[001] [2] J. Appell, H. T. Nguyêñ and P. P. Zabreĭko, Multivalued superposition operators in ideal spaces of vector functions I, Indag. Math. 2 (4) (1991), 385-395; Zbl. 748.47050. | Zbl 0748.47050
[002] [3] J. Appell, H. T. Nguyêñ and P. P. Zabreĭko, Multivalued superposition operators in ideal spaces of vector functions II, Indag. Math. 2 (4) (1991), 397-409; Zbl. 748.47051. | Zbl 0748.47051
[003] [4] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza-Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547; Zbl. 649.28011. | Zbl 0649.28011
[004] [5] P. Brunovsky, Scorza-Dragoni's theorem for unbounded set-valued functions, Mat. Stručno-metod. Časopis 20 (1970), 205-213; Zbl. 215.216. | Zbl 0215.21601
[005] [6] C. Castaing, Sur les équations différentielles multivoques, C. R. Acad. Sci. Paris 263 (1966), 63-66; Zbl. 143.311. | Zbl 0143.31102
[006] [7] K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin 1992.
[007] [8] V. V. Filippov, On Luzin's theorem and right-hand sides of differential inclusions (Russian), Mat. Zametki 37 (1985), 93-98 [= Math. Notes 37 (1985), 53-56]; Zbl. 588.34011.
[008] [9] V. V. Filippov, On Luzin's and Scorza-Dragoni's theorem (Russian), Vestnik Mosk. Univ. 42 (1987), 66-68 [= Mosc. Univ. Math. Bull., 42 (1987), 61-63]; Zbl. 617.28005.
[009] [10] A. Fryszkowski, Carathéodory type selectors of set-valued maps of two variables, Bull. Pol. Acad. Sci. Math. 25 (1977), 41-46; Zbl. 358.54002. | Zbl 0358.54002
[010] [11] C. J. Himmelberg, Measurable relations, Fundamenta Math. 87 (1975), 53-72; Zbl. 296.28003. | Zbl 0296.28003
[011] [12] C. J. Himmelberg and F. S. van Vleck, An extension of Brunovsky's Scorza-Dragoni type theorem for unbounded set-valued functions, Math. Slovaca 26 (1976), 47-52; Zbl. 32.28004. | Zbl 0328.28004
[012] [13] J. Janus, A remark on Carathéodory-type selections, Matematiche 41 (1986), 3-13; Zbl. 678.28005. | Zbl 0678.28005
[013] [14] T. Kaczynski, Unbounded multivalued Nemytskii operators in Sobolev spaces and their applications to discontinuous nonlinearity, Rocky Mountain J. Math. 22 (1992), 635-643; Zbl. 810.35172. | Zbl 0810.35172
[014] [15] N. Kikuchi, On contingent equations satisfying the Carathéodory-type conditions, Publ. Res. Inst. Math., Kyoto Univ. 3,3 (1968), 361-371; Zbl. 197.131. | Zbl 0197.13106
[015] [16] M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with Hysteresis (Russian), Nauka, Moscow 1983 [Engl. transl.: Springer, Berlin 1988]; Zbl. 665.47038.
[016] [17] A. Kucia, On the existence of Carathéodory selectors, Bull. Pol. Acad. Sci. Math. 32 (1984), 233-241; Zbl. 562.28004. | Zbl 0562.28004
[017] [18] A. Kucia, Extending Carathéodory functions, Bull. Pol. Acad. Sci. Math. 36 (1988), 593-601; Zbl. 771.28008. | Zbl 0771.28008
[018] [19] A. Kucia, Scorza Dragoni type theorems, Fundamenta Math. 138 (1991), 197-203; Zbl. 744.28011. | Zbl 0744.28011
[019] [20] A. Kucia and A. Nowak, On Carathéodory type selectors in a Hilbert space, Ann. Mat. Sil. 14 (1986), 47-52; Zbl. 593.54018. | Zbl 0593.54018
[020] [21] A. Kucia and A. Nowak, On Filippov type theorems and measurability of inverses of random operators, Bull. Pol. Acad. Sci. Math. 38 (1990), 151-158; Zbl. 771.28009. | Zbl 0771.28009
[021] [22] A. Kucia and A. Nowak, A note on Carathéodory type functions, Acta Univ. Carol. Math. Phys. 34, 2 (1993), 71-74; Zbl. 809.28007. | Zbl 0809.28007
[022] [23] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Pol. Acad. Sci. Math. 13 (1965), 397-403; Zbl. 152.214. | Zbl 0152.21403
[023] [24] V. L. Levin, Convex Analysis on Spaces of Measurable Functions and Applications in Mathematics and Economics (Russian), Nauka, Moscow 1985; Zbl. 617.46035.
[024] [25] S. Łojasiewicz, Some theorems of Scorza Dragoni type for multifunctions with applications to the problem of existence of solutions for multivalued differential equations, Math. Control Theory, Banach Center Publ. 14 (1985), 625-643; Zbl. 576.49024.
[025] [26] E.A. Michael, Continuous selections I, Ann. Math. 63,2 (1956), 361-381; Zbl. 71.159. | Zbl 0071.15902
[026] [27] J. Myjak, A remark on Scorza-Dragoni theorem for differential inclusions, Čas. Pěstování Mat. 114 (1989), 294-298; Zbl. 701.34026. | Zbl 0701.34026
[027] [28] V. V. Obukhovskiĭ, On periodic solutions of differential equations with multivalued right-hand side (Russian), Trudy Mat. Fak. Voronezh. Gos. Univ. 10 (1973), 74-82.
[028] [29] V. V. Obukhovskiĭ, Personal communication, 1989.
[029] [30] T. Rzeżuchowski, Scorza-Dragoni type theorem for upper semicontinuous multi-valued functions, Bull. Pol. Acad. Sci. Math. 28 (1980), 61-66; Zbl. 459.28007. | Zbl 0459.28007
[030] [31] A. Spakowski, On superpositionally measurable multifunctions, Acta Univ. Carolinae 30 (1989), 149-151; Zbl. 705.28003. | Zbl 0705.28003
[031] [32] W. Zygmunt, On the Scorza-Dragoni's type property of the real function semicon-tinuous to the second variable, Rend. Accad. Naz. Sci. XL 11 (1987), 53-63; Zbl. 654.28006. | Zbl 0654.28006
[032] [33] W. Zygmunt, The Scorza-Dragoni's type property and product measurability of a multifunction of two variables, Rend. Accad. Naz. Sci. XL 12 (1988), 109-115; Zbl. 677.28004. | Zbl 0677.28004
[033] [34] W. Zygmunt, Product measurability and Scorza-Dragoni's property, Rend. Sem. Mat. Univ. Padova 79 (1988), 301-304; Zbl. 649.28012. | Zbl 0649.28012
[034] [35] W. Zygmunt, On the approximation of semicontinuous Scorza-Dragonians by the multifunctions of Carathéodory type, Rend. Accad. Naz. Sci. XL 13 (1989), 23-30; Zbl. 692.28005. | Zbl 0692.28005
[035] [36] W. Zygmunt, A note concerning the Scorza-Dragoni's type property of the compact multivalued multifunctions, Rend. Accad. Naz. Sci. XL 13 (1989), 31-33; Zbl. 697.28005. | Zbl 0697.28005
[036] [37] W. Zygmunt, Remarks on superpositionally measurable multifunctions (Russian), Mat. Zametki 48 (1990), 70-72 [= Math. Notes, 48 (1990), 923-924]; Zbl. 728.28010.
[037] [38] W. Zygmunt, The Scorza-Dragoni property (Polish), Thesis, M. Curie Univ. Lublin 1990; Zbl. 734.28013.
[038] [39] W. Zygmunt, On superpositionally measurable semi-Carathéodory multifunctions, Comm. Math. Univ. Carol. 33, 1 (1992), 73-77; Zbl. 756.28008. | Zbl 0756.28008
[039] [40] W. Zygmunt, Personal communication 1994.
[040] [41] W. Zygmunt, On superpositional measurability of semi-Carathéodory multifunctions, Comm. Math. Univ. Carol. 35, 4 (194), 741-744. | Zbl 0821.28008