Partially dissipative periodic processes
Andres, Jan ; Górniewicz, Lech ; Lewicka, Marta
Banach Center Publications, Tome 37 (1996), p. 109-118 / Harvested from The Polish Digital Mathematics Library

Further extension of the Levinson transformation theory is performed for partially dissipative periodic processes via the fixed point index. Thus, for example, the periodic problem for differential inclusions can be treated by means of the multivalued Poincaré translation operator. In a certain case, the well-known Ważewski principle can also be generalized in this way, because no transversality is required on the boundary.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:251310
@article{bwmeta1.element.bwnjournal-article-bcpv35i1p109bwm,
     author = {Andres, Jan and G\'orniewicz, Lech and Lewicka, Marta},
     title = {Partially dissipative periodic processes},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {109-118},
     zbl = {0845.34026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p109bwm}
}
Andres, Jan; Górniewicz, Lech; Lewicka, Marta. Partially dissipative periodic processes. Banach Center Publications, Tome 37 (1996) pp. 109-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv35i1p109bwm/

[000] [1] J. Andres, Asymptotic properties of solutions to quasi-linear differential systems., J. Comp. Appl. Math. 41 (1991), 56-64.

[001] [2] J. Andres, Transformation theory for nondissipative systems: Some remarks and simple application in examples, Acta UPO 111, Phys. 32 (1993), 125-132.

[002] [3] J. Andres, Large-period forced oscillations to higher-order pendulum-type equations, to appear in Diff. Eqns and Dynam. Syst.

[003] [4] J. Andres, M. Gaudenzi and F. Zanolin, A transformation theorem for periodic solutions of nondissipative systems, Rend. Sem. Mat. Univers. Politecn. Torino 48(2) (1990), 171-186. | Zbl 0766.34016

[004] [5] R. Bader and W. Kryszewski, Fixed point index for compositions of set-valued maps with proximally ∞-connected values on arbitrary ANR's, Set Valued Analysis 2(3) (1994), 459-480. | Zbl 0846.55001

[005] [6] A. Bressan, Upper and lower semicontinuous differential inclusions. A unified approach, Controllability and Optimal Control, H. Sussmann (ed.), M. Dekker, 1990, 21-31.

[006] [7] A. Capietto and B. M. Garay, Saturated invariant sets and boundary behaviour of differential systems, J. Math. Anal. Appl. 176(1) (1993), 166-181. | Zbl 0780.34036

[007] [8] M. L. C. Fernandes, Uniform repellers for processes with application to periodic differential systems, J. Diff. Eq. 86 (1993), 141-157. | Zbl 0795.34033

[008] [9] M. L. C. Fernandes and F. Zanolin, Repelling conditions for boundary sets using Liapunov-like functions II: Persistence and periodic solutions, J. Diff. Eq. 86 (1993), 33-58. | Zbl 0719.34092

[009] [10] L. Górniewicz, Topological Approach to Differential Inclusions, Preprint No. 104 (November 1994), University of Gdańsk, 1-66.

[010] [11] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473. | Zbl 0757.54019

[011] [12] L. Górniewicz and S. Plaskacz, Periodic solutions of differential inclusions in Rn, Boll. U. M. I. 7-A (1993), 409-420. | Zbl 0798.34018

[012] [13] J. K. Hale, Asymptotic Behavior of Dissipative Systems, MSM 25, AMS, Providence, R. I., 1988. | Zbl 0642.58013

[013] [14] J. K. Hale, J. P. LaSalle and M. Slemrod, Theory of general class of dissipative processes, J. Math. Anal. Appl. 39(1) (1972), 117-191. | Zbl 0238.34098

[014] [15] J. K. Hale and O. Lopes, Fixed-point theorems and dissipative processes, J. Diff. Eq. 13 (1973), 391-402. | Zbl 0256.34069

[015] [16] J. Hofbauer, An index theorem for dissipative semiflows, Rocky Mountain J. Math. 20(4) (1993), 1017-1031. | Zbl 0728.58035

[016] [17] J. Hofbauer and K. Sigmund, Dynamical Systems and the Theory of Evolution, Cambrige Univ. Press, Cambrige, 1988. | Zbl 0678.92010

[017] [18] A. M. Krasnosel'skiĭ, M. A. Krasnosel'skiĭ and J. Mawhin, On some conditions of forced periodic oscillations, Diff. Integral Eq. 5(6) (1992), 1267-1273. | Zbl 0761.34035

[018] [19] A. M. Krasnosel'skiĭ, J. Mawhin, M. A. Krasnosel'skiĭ and A. Pokrovskiĭ, Generalized guiding functions in a problem on high frequency forced oscillations, Rapp. no 222 - February 1993, Sm. Math., Inst. de Math. Pure et Appl. UCL.

[019] [20] M. A. Krasnosel'skiĭ, J. Mawhin and A. Pokrovskiĭ, New theorems on forced periodic oscillations and bounded solutions, Doklady AN SSSR 321(3) (1991) 491-495 (in Russian).

[020] [21] N. Levinson, Transformation theory of non-linear differential equations of the second order, Ann. of Math. 45 (1944), 723-737. | Zbl 0061.18910

[021] [22] V. V. Rumyantsev and A. S. Oziraner, The Stability and Stabilization of Motion with Respect to Some of the Variables, Nauka, Moscow, 1987 (in Russian). | Zbl 0626.70021

[022] [23] G. R. Sell, Periodic solutions and asymptotic stability, J. Diff. Eq. 2(2) (1966), 143-157. | Zbl 0136.08501

[023] [24] R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal., T.M.A. 22, 6 (1994), 707-737. | Zbl 0801.34041

[024] [25] V. I. Vorotnikov, Stability of Dynamical Systems with Respect to Some of the Variables, Nauka, Moscow, 1991 (in Russian). | Zbl 0734.93063

[025] [26] T. Yoshizawa, Stability Theory and Existence of Periodic Solutions and Almost Periodic Solutions, Springer, Berlin, 1975.

[026] [27] F. Zanolin, Permanence and positive periodic solutions for Kolmogorov competing species systems, Preprint of SISSA, Ref. 144/91/M.