Isometric imbeddings of Euclidean spaces into finite dimensional lp-spaces
König, Hermann
Banach Center Publications, Tome 31 (1995), p. 79-87 / Harvested from The Polish Digital Mathematics Library

It is shown that l2n imbeds isometrically into l4n2+1 provided that n is a prime power plus one, in the complex case. This and similar imbeddings are constructed using elementary techniques from number theory, combinatorics and coding theory. The imbeddings are related to existence of certain cubature formulas in numerical analysis.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:251336
@article{bwmeta1.element.bwnjournal-article-bcpv34i1p79bwm,
     author = {K\"onig, Hermann},
     title = {Isometric imbeddings of Euclidean spaces into finite dimensional $l\_p$-spaces},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {79-87},
     zbl = {0836.46006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p79bwm}
}
König, Hermann. Isometric imbeddings of Euclidean spaces into finite dimensional $l_p$-spaces. Banach Center Publications, Tome 31 (1995) pp. 79-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p79bwm/

[000] [B] E. Bannai, On extremal finite sets in the sphere and other metric spaces, London Math. Soc. Lecture Notes Ser. 131 (1986), 13-38.

[001] [DGS] P. Delsarte, J. M. Goethals, J. J. Seidel, Spherical codes and designs, Geom. Dedicata 6 (1977), 363-388. | Zbl 0376.05015

[002] [FLM] T. Figiel, J. Lindenstrauss, V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. | Zbl 0375.52002

[003] [GS] J. M. Goethals, J. J. Seidel, Cubature formulae, polytopes and spherical designs, in: The geometric vein, Coxeter Festschrift, ed. C. Davis et al. Springer 1981, 203-218.

[004] [Ho] S. G. Hoggar, t-designs in projective spaces, European J. Combin. 3 (1982), 233-254.

[005] [HR] H. Halberstam, K. Roth, Sequences, Springer 1983.

[006] [Hu] Hua Loo Keng, Introduction to number theory, Springer 1982.

[007] [KT] H. König, N. Tomczak-Jaegermann, Norms of minimal projections, J. Funct. Anal. 119 (1994), 253-280.

[008] [L] Yu. Lyubich, On the boundary spectrum of a contraction in Minkovsky spaces, Siberian Math. J. 11 (1970), 271-279.

[009] [LV] Yu. Lyubich, L. Vaserstein, Isometric imbeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), 327-362. | Zbl 0785.52002

[010] [M] V. Milman, A few observations on the connections between local theory and some other fields, in: Geometric aspects of functional analysis, Lecture Notes in Math. 1317 (1988), 283-289.

[011] [MS] F. Mac Williams, N. Sloane, The theory of error-correcting codes II, North Holland 1977.

[012] [R] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463. | Zbl 0762.11019

[013] [S] J. J. Seidel, Isometric embeddings and geometric designs, preprint Eindhoven 1993, to appear in Trends in Discrete Mathematics.