The notion of Poisson Lie group (sometimes called Poisson Drinfel'd group) was first introduced by Drinfel'd [1] and studied by Semenov-Tian-Shansky [7] to understand the Hamiltonian structure of the group of dressing transformations of a completely integrable system. The Poisson Lie groups play an important role in the mathematical theories of quantization and in nonlinear integrable equations. The aim of our lecture is to point out the naturality of this notion and to present basic facts about Poisson Lie groups together with some relations to the recent work on quantum groups.
@article{bwmeta1.element.bwnjournal-article-bcpv34i1p55bwm, author = {Grabowski, Janusz}, title = {Poisson Lie groups and their relations to quantum groups}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {55-64}, zbl = {0864.17034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p55bwm} }
Grabowski, Janusz. Poisson Lie groups and their relations to quantum groups. Banach Center Publications, Tome 31 (1995) pp. 55-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p55bwm/
[000] [1]. V. G. Drinfel'd, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations, Soviet Math. Dokl. 27 (1983), 68-71.
[001] [2]. V. G. Drinfel'd, Quantum groups, Proc. ICM, Berkeley, Vol. 1, Amer. Math. Soc. 1986, 789-820.
[002] [3]. J. Grabowski, Quantum SU(2) group of Woronowicz and Poisson structures, in: Differential Geometry and its Application, Proc. Conf. Brno 1989, Eds. J. Janyška and D. Krupka, World Scientific 1990, 313-322.
[003] [4]. J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys. 9 (1992), 45-73. | Zbl 0761.16012
[004] [5] Y. Kosmann-Schwarzbach, Poisson-Drinfel'd groups, Publ. IRMA, Lille, Vol. 5, No. 12, 1987.
[005] [6] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501-526. | Zbl 0673.58018
[006] [7] M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson Lie group actions, Publ. Res. Inst. Math. Sci. 21 (1985), 1237-1260. | Zbl 0673.58019
[007] [8] J. Vey, Déformation du crochet de Poisson sur une variété symplectique, Comment. Math. Helv. 50 (1975), 421-454. | Zbl 0351.53029
[008] [9] S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. | Zbl 0676.46050