We describe in this talk three methods of constructing different links with the same Jones type invariant. All three can be thought as generalizations of mutation. The first combines the satellite construction with mutation. The second uses the notion of rotant, taken from the graph theory, the third, invented by Jones, transplants into knot theory the idea of the Yang-Baxter equation with the spectral parameter (idea employed by Baxter in the theory of solvable models in statistical mechanics). We extend the Jones result and relate it to Traczyk's work on rotors of links. We also show further applications of the Jones idea, e.g. to 3-string links in the solid torus. We stress the fact that ideas coming from various areas of mathematics (and theoretical physics) has been fruitfully used in knot theory, and vice versa.
@article{bwmeta1.element.bwnjournal-article-bcpv34i1p121bwm, author = {Przytycki, J\'ozef}, title = {Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics}, journal = {Banach Center Publications}, volume = {31}, year = {1995}, pages = {121-148}, zbl = {0848.57011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p121bwm} }
Przytycki, Józef. Search for different links with the same Jones' type polynomials: Ideas from graph theory and statistical mechanics. Banach Center Publications, Tome 31 (1995) pp. 121-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p121bwm/
[000] [1] D. Albers, John Horton Conway, Talking a good game, Math. Horizons, Spring 1994, Published by the M.A.A.
[001] [2] R. P. Anstee, J. H. Przytycki, D. Rolfsen, Knot polynomials and generalized mutation, Topology Appl., 32 (1989), 237-249. | Zbl 0638.57006
[002] [3] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982. | Zbl 0538.60093
[003] [4] N. Bourbaki, Groupes et algèbres de Lie, VI: Groupes de Coxeter et systèmes de Tits, Herman Paris, 1968. | Zbl 0186.33001
[004] [5] R. I. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7 (1940), 312-340. | Zbl 0024.16501
[005] [6] J. H. Conway, An enumeration of knots and links, Computational problems in abstract algebra (ed. J. Leech), Pergamon Press (1969), 329-358.
[006] [7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-249. | Zbl 0572.57002
[007] [8] J. Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), 295-320. | Zbl 0614.57005
[008] [9] J. Hoste, J. H. Przytycki, A survey of skein modules of 3-manifolds, in: Knots 90, De Gruyter, Berlin - New York 1992, 363-379. | Zbl 0772.57022
[009] [10] J. Hoste, J. H. Przytycki, Tangle surgeries which preserve Jones-type polynomials, Center for Pure and Applied Mathematics preprint - PAM 617, U. C. Berkeley, 1994. | Zbl 0890.57004
[010] [11] G. T. Jin, D. Rolfsen, Some remarks on rotors in link theory, Canad. Math. Bull. 34 (1991), 480-484. | Zbl 0754.57002
[011] [12] V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388. | Zbl 0631.57005
[012] [13] V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311-334. | Zbl 0695.46029
[013] [14] V. F. R. Jones, Talk given at 25th Annual Spring Topology Conference, CSU Sacramento, April 11, 1991.
[014] [15] V. F. R. Jones, Commuting transfer matrices and link polynomials, Internat. J. Math. 3 (1992), 205-212. | Zbl 0774.57005
[015] [16] V. F. R. Jones, Coincident link polynomials from commuting transfer matrices, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), 137-151, World Sci. Publishing, River Edge, NJ, 1992. | Zbl 0813.57004
[016] [17] T. Kanenobu, Infinitely many knots with the same polynomial invariant, Proc. Amer. Math. Soc. 97 (1986), 158-162. | Zbl 0611.57007
[017] [18] T. Kanenobu, The Homfly and the Kauffman bracket polynomials for the generalized mutant of a link, Topology Appl., to appear. | Zbl 0827.57006
[018] [19] J. Kania-Bartoszyńska, Examples of different 3-manifolds with the same invariants of Witten and Reshetikhin-Turaev, Topology 32 (1993), 47-54. | Zbl 0794.57002
[019] [20] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407. | Zbl 0622.57004
[020] [21] L-bull W. B. R. Lickorish, Polynomials for links, Bull. London Math. Soc. 20 (1988), 558-588. | Zbl 0685.57001
[021] [22] Li-1 W. B. R. Lickorish, Distinct 3-manifolds with all invariants the same, Proc. Amer. Math. Soc. 117 (1993), 285-292. | Zbl 0770.57003
[022] [23] W. B. R. Lickorish, A. S. Lipson, Polynomials of 2-cable-like links, Proc. Amer. Math. Soc. 100 (1987), 355-361. | Zbl 0617.57004
[023] [24] W. B. R. Lickorish, K. Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141. | Zbl 0608.57009
[024] [25] J. M. Montesinos, Surgery on links and double branched covers of , in: Knots, groups and 3-manifolds, ed. L. P. Neuwirth, Ann. Math. Studies, 84, 227-259, Princeton Univ. Press, 1975.
[025] [26] M-T-1 H. R. Morton, P. Traczyk, The Jones polynomial of satellite links around mutants, in: Braids, Ed. J. S. Birman, A. Libgober, AMS Contemporary Math., 78 (1988), 587-592. | Zbl 0666.57010
[026] [27] H. R. Morton, P. Traczyk, Knots and algebras, Contribuciones Matematicas en homenaje al profesor D. Antonio Plans Sanz de Bremond, ed. E. Martin-Peinador and A. Rodez Usan, University of Zaragoza, (1990), 201-220.
[027] [28] Mura J. Murakami, The parallel version of polynomial invariants of links, Osaka J. Math. 26 (1989), 1-55. | Zbl 0704.57003
[028] [29] J. H. Przytycki, Equivalence of cables of mutants of knots, Canad. J. Math. XLI (1989), 250-273. | Zbl 0667.57003
[029] [30] J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), 91-100. | Zbl 0762.57013
[030] [31] J. H. Przytycki, Manuscript of the lecture delivered at the University of Tennessee, October 18, 1991.
[031] [32] J. H. Przytycki, Applications of the spectral parameter tangle of V. Jones, Abstracts Amer. Math. Soc. 12 (1991), 496-497.
[032] [33] J. H. Przytycki, The spectral parameter 3-string tangle, in preparation.
[033] [34] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139. | Zbl 0655.57002
[034] [35] N. Y. Reshetikhin, V. Turaev, Invariants of three manifolds via link polynomials and quantum groups. Invent. Math. 103 (1991), 547-597. | Zbl 0725.57007
[035] [36] D. Rolfsen, The quest for a knot with trivial Jones polynomial; diagram surgery and the Temperley-Lieb algebra, in: Topics in knot theory, Ed. M. E. Bozhüyük, NATO ASI Series, Series C: Mathematical and Physical Sciences - Vol. 399, Kluwer Academic Publishers 1993, 195-210. | Zbl 0833.57002
[036] [37] D. Rolfsen, Global mutation of knots, J. Knot Theory Ramifications 3 (1994), 407-417. | Zbl 0874.57003
[037] [38] H. N. V. Temperley, E. H. Lieb, Relations between the 'percolation' and 'coloring' problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the 'percolation' problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280. | Zbl 0211.56703
[038] [39] P. Traczyk, A note on rotant links, preprint, 1989. | Zbl 0942.57007
[039] [40] V. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553. | Zbl 0648.57003
[040] [41] V. G. Turaev, The Conway and Kauffman modules of the solid torus, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), 79-89. %English translation: J. Soviet Math. | Zbl 0673.57004
[041] [42] V. G. Turaev, H. Wenzl, Quantum invariants of 3-manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993), 323-358. | Zbl 0784.57007
[042] [43] W. T. Tutte, Codichromatic graphs, J. Combin. Theory Ser. B 16 (1974), 168-174. | Zbl 0275.05108
[043] [44] O. Ya. Viro, Nonprojecting isotopies and knots with homeomorphic coverings, J. Soviet Math. 12 (1979), 86-96. | Zbl 0406.57021
[044] [45] F. Waldhausen, Über Involutionen der 3 Sphäre, Topology 8 (1969), 81-91. | Zbl 0185.27603
[045] [4] S. Yamada, An operator on regular isotopy invariants of link diagrams, Topology 28 (1989), 369-377. | Zbl 0685.57002