From the theorem of Ważewski to computer assisted proofs in dynamics
Mrozek, Marian
Banach Center Publications, Tome 31 (1995), p. 105-120 / Harvested from The Polish Digital Mathematics Library
Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:251314
@article{bwmeta1.element.bwnjournal-article-bcpv34i1p105bwm,
     author = {Mrozek, Marian},
     title = {From the theorem of Wa\.zewski to computer assisted proofs in dynamics},
     journal = {Banach Center Publications},
     volume = {31},
     year = {1995},
     pages = {105-120},
     zbl = {0848.34032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p105bwm}
}
Mrozek, Marian. From the theorem of Ważewski to computer assisted proofs in dynamics. Banach Center Publications, Tome 31 (1995) pp. 105-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv34i1p105bwm/

[000] [1] O. Aberth, Precise Numerical Analysis, William C. Brown Publishers, Dubuque, Iowa, 1988. | Zbl 0665.65001

[001] [2] V. Benci, A Generalization of the Conley-Index Theory, Rend. Istit. Mat. Trieste 18 (1986), 16-39. | Zbl 0626.58012

[002] [3] R. Churchill, Isolated invariant sets in compact metric spaces, J. Differential Equations 12 (1972), 330-352. | Zbl 0238.54044

[003] [4] C. Conley, On a generalization of the Morse index, in: Ordinary Differential Equations, 1971 NRL-MRC Conference, ed. L. Weiss, Academic Press, New York (1972), 27-33.

[004] [5] C. C. Conley, Isolated invariant sets and the Morse index, CBMS no. 38, A.M.S., Providence, R.I., 1978.

[005] [6] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, in: Advances in Differential and Integral Equations, ed. J. Nohel, Studies in Applied Mathematics 5. SIAM Publications, Philadelphia (1969), 97-104.

[006] [7] C. Conley, R. Easton, Isolated Invariant Sets and Isolating Blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61. | Zbl 0223.58011

[007] [8] M. Degiovanni and M. Mrozek, The Conley index for maps in absence of compactness, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 75-94. | Zbl 0789.58066

[008] [9] R. Franzosa, Index Filtrations and the Homology Index Braid for Partially Ordered Morse Decompositions, Trans. Amer. Math. Soc. 298 (1986), 193-213. | Zbl 0626.58013

[009] [10] R. Franzosa, The Connection Matrix Theory for Morse Decompositions, Trans. Amer. Math. Soc. 311 (1989) 561-592. | Zbl 0689.58030

[010] [11] R. Franzosa, The Continuation Theory for Morse Decompositions and Connection Matrices, Trans. Amer. Math. Soc. 310 (1988), 781-803. | Zbl 0708.58021

[011] [12] L. Górniewicz, Topological Degree of Morphisms and its Applications to Differential Inclusions, Raccolta di Seminari del Dipartimento di Matematica dell'Universita degli Studi della Calabria, No. 5, 1983.

[012] [13] L. Górniewicz, Homological Methods in Fixed Point Theory of Multi-valued Maps, Dissertationes Math. 129, PWN, Warszawa, 1976. | Zbl 0324.55002

[013] [14] A. Iserles, A. T. Peplow, A. M. Stuart, A unified approach to spurious solutions introduced by time discretization. Part I: Basic theory, SIAM J. Numer. Anal. 28 (1991), 1723-1751. | Zbl 0736.65050

[014] [15] T. Kaczyński and M. Mrozek, Conley index for discrete multivalued dynamical systems, Topology Appl., accepted. | Zbl 0843.54042

[015] [16] H. L. Kurland, The Morse Index of an Isolated Invariant Set is a Connected Simple System, J. Differential Equations 42 (1981), 234-259. | Zbl 0477.58029

[016] [17] H. L. Kurland, Following Homology in Singularly Perturbed Systems, J. Differential Equations 62 (1986), 1-72. | Zbl 0603.58038

[017] [18] Ch. McCord, K. Mischaikow and M. Mrozek, Zeta Functions, Periodic Trajectories and the Conley Index, J. Differential Equations, accepted. | Zbl 0833.34045

[018] [19] K. Mischaikow and M. Mrozek, Isolating neighbourhoods and Chaos, Jap. J. Ind. & Appl. Math., accepted. | Zbl 0840.58033

[019] [20] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc., in print. | Zbl 0820.58042

[020] [21] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Part II: details, preprint. | Zbl 0820.58042

[021] [22] J. T. Montgomery, Cohomology of Isolated Invariant Sets under Perturbation, J. Differential Equations 13 (1973), 257-299. | Zbl 0238.58010

[022] [23] M. Mrozek, Index pairs and the Fixed Point Index for Semidynamical Systems with Discrete Time, Fund. Math. 133 (1989), 179-194. | Zbl 0708.58024

[023] [24] M. Mrozek, A Cohomological Index of Conley Type for Multi-valued Admissible Flows, J. Differential Equations 84 (1990), 15-51. | Zbl 0703.34019

[024] [25] M. Mrozek, Leray Functor and the Cohomological Conley Index for Discrete Dynamical Systems, Trans. Amer. Math. Soc. 318 (1990), 149-178. | Zbl 0686.58034

[025] [26] M. Mrozek, Open index pairs, the fixed point index and rationality of zeta functions, Ergodic Theory Dynamical Systems 10 (1990), 555-564. | Zbl 0696.58044

[026] [27] M. Mrozek, The Morse Equation in Conley's Index Theory for Homeomorphisms, Topology Appl. 38 (1991), 45-60. | Zbl 0725.58022

[027] [28] M. Mrozek, The Conley index on compact ANR's is of finite type, Results Math. 18 (1990), 306-313. | Zbl 0723.54038

[028] [29] M. Mrozek, Shape Index and Other Indices of Conley Type for Continuous Maps on Locally Compact Metric Spaces, Fund. Math., 145 (1994), 15-37. | Zbl 0870.54043

[029] [30] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs in dynamics, in preparation. | Zbl 0861.58027

[030] [31] M. Mrozek and K. P. Rybakowski, A cohomological Conley index for maps on metric spaces, J. Differential Equations 90.1 (1991), 143-171. | Zbl 0721.58040

[031] [32] M. Mrozek and K. P. Rybakowski, Discretized ordinary differential equations and the Conley index, J. Dynamics Differential Equations 4 (1992), 57-63. | Zbl 0745.34041

[032] [33] J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynamical Systems 8 (1988), 375-393. | Zbl 0682.58040

[033] [34] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Springer-Verlag, Berlin Heidelberg 1987. | Zbl 0628.58006

[034] [35] T. Ważewski, Une méthode topologique de l'examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Nazionale dei Lincei, Cl. Sci. fisiche, mat. e naturali, Ser. VIII, vol. III (1947), 210-215. | Zbl 0029.29302

[035] [36] T. Ważewski, Sur un principe topologique pour l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313. | Zbl 0032.35001

[036] [37] T. Ważewski, Sur un méthode topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles, Proceedings of the International Congress of Mathematicians 1954, 3 (1955), 5-14.

[037] [38] H. C. Yee, P. K. Sweby and D. F. Griffiths, Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 1. The Dynamics of Time Discretization and Its Implications for Algorithm Development in Computational Fluid Dynamics, J. Comput. Phys. 97 (1991), 249-310. | Zbl 0760.65087