A counterexample to the Lp-Hodge decomposition
Hajłasz, Piotr
Banach Center Publications, Tome 37 (1996), p. 79-83 / Harvested from The Polish Digital Mathematics Library

We construct a bounded domain Ω2 with the cone property and a harmonic function on Ω which belongs to W01,p(Ω) for all 1 ≤ p < 4/3. As a corollary we deduce that there is no Lp-Hodge decomposition in Lp(Ω,2) for all p > 4 and that the Dirichlet problem for the Laplace equation cannot be in general solved with the boundary data in W1,p(Ω) for all p > 4.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262838
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p79bwm,
     author = {Haj\l asz, Piotr},
     title = {A counterexample to the $L^{p}$-Hodge decomposition},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {79-83},
     zbl = {0846.35035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p79bwm}
}
Hajłasz, Piotr. A counterexample to the $L^{p}$-Hodge decomposition. Banach Center Publications, Tome 37 (1996) pp. 79-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p79bwm/

[000] [1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), 417-443. | Zbl 0792.53039

[001] [2] M.-E. Bogovskiĭ, Solutions of some vector analysis problems connected with the operators div and grad, Trudy Sem. Sobolev. Akad. Nauk SSSR, Sibirsk. Otdel. Mat., 1 (1980), 5-40 (in Russian).

[002] [3] J.-E. Brennan, The integrability of the derivative in conformal mapping, J. London Math. Soc. 18 (1978), 261-272. | Zbl 0422.30006

[003] [4] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. I, Springer, 1990.

[004] [5] L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), 17-35. | Zbl 0848.58051

[005] [6] L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms, Indiana Univ. Math. J. 44 (1995), 305-339. | Zbl 0855.42009

[006] [7] T. Iwaniec, p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589-624.

[007] [8] T. Iwaniec, Lp-theory of quasiregular mappings, in: Lecture Notes in Math. 1508, Springer, 1992, 39-64.

[008] [9] T. Iwaniec and A. Lutoborski, Integral estimates for null-Lagrangians, Arch. Rational Mech. Anal. 125 (1993), 25-79. | Zbl 0793.58002

[009] [10] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29-81. | Zbl 0785.30008

[010] [11] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129-143. | Zbl 0766.46016

[011] [12] T. Iwaniec and C. Sbordone, Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143-161. | Zbl 0802.35016

[012] [13] H. Kozono and H. Sohr, New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J. 40 (1991), 1-27. | Zbl 0732.35068

[013] [14] V. G. Maz'ya and A. A. Solov'ev, On an integral equation for the Dirichlet problem in a plane domain with a cusp on the boundary, Mat. Sb. 180 (1989), 1211-1233 (in Russian); English transl.: Math. USSR-Sb. 68 (1991), 61-83.

[014] [15] Ch. Pommerenke, On the integral means of the derivative of a univalent function, J. London Math. Soc. 32 (1985), 254-258.

[015] [16] C. Scott, Lp-theory of differential forms on manifolds, preprint.

[016] [17] C.-G. Simader, On Dirichlet's Boundary Value Problem, Lecture Notes in Math. 268, Springer, 1972.

[017] [18] B. Stroffolini, On weakly A-harmonic tensors, Studia Math. 114 (1995), 289-301. | Zbl 0868.35015