Existence of weak solutions and an -estimate are shown for nonlinear nondegenerate parabolic systems with linear growth conditions with respect to the gradient. The -estimate is proved for equations with coefficients continuous with respect to x and t in the general main part, and for diagonal systems with coefficients satisfying the Carathéodory condition.
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p491bwm, author = {Zaj\k aczkowski, Wojciech}, title = {$L\_$\infty$$-estimates for solutions of nonlinear parabolic systems with gradient linear growth}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {491-501}, zbl = {0856.35069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p491bwm} }
Zajączkowski, Wojciech. $L_∞$-estimates for solutions of nonlinear parabolic systems with gradient linear growth. Banach Center Publications, Tome 37 (1996) pp. 491-501. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p491bwm/
[000] [1] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983) 311-341. | Zbl 0497.35049
[001] [2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. | Zbl 0641.47066
[002] [3] E. DiBenedetto, Degenerate Parabolic Equations, Springer, 1993.
[003] [4] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968.
[004] [5] V. A. Solonnikov, On boundary problems for linear parabolic systems of differential equations of general type, Trudy Mat. Inst. Steklov. 83 (1965) (in Russian); English transl.: Proc. Steklov Inst. Math. 83 (1967). | Zbl 0164.12502
[005] [6] M. Wiegner, Global solutions to a class of strongly coupled parabolic systems, Math. Ann. 292 (1992), 711-727. | Zbl 0801.35064
[006] [7] W. M. Zajączkowski, -estimate for solutions of nonlinear parabolic systems, this volume.