Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist functions , defined around p, such that and , j = 1,...,m. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T*M.
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p449bwm, author = {Turiel, Francisco}, title = {Classification of (1,1) tensor fields and bihamiltonian structures}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {449-458}, zbl = {0873.53017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p449bwm} }
Turiel, Francisco. Classification of (1,1) tensor fields and bihamiltonian structures. Banach Center Publications, Tome 37 (1996) pp. 449-458. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p449bwm/
[000] [1] R. Brouzet, P. Molino et F. J. Turiel, Géométrie des systèmes bihamiltoniens, Indag. Math. 4 (3) (1993), 269-296.
[001] [2] P. Cabau, J. Grifone et M. Mehdi, Existence de lois de conservation dans le cas cyclique, Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), 789-803. | Zbl 0748.58032
[002] [3] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I, Indag. Math. 18 (1956), 338-359.
[003] [4] J. Grifone and M. Mehdi, Existence of conservation laws and characterization of recursion operators for completely integrable systems, preprint, Univ. Toulouse II, 1993. | Zbl 0888.35025
[004] [5] J. Lehmann-Lejeune, Intégrabilité des G-structures définies par une 1-forme 0-déformable à valeurs dans le fibré tangent, Ann. Inst. Fourier (Grenoble) 16 (1966), 329-387. | Zbl 0145.42103
[005] [6] H. Osborn, The existence of conservation laws, I, Ann. of Math. 69 (1959), 105-118. | Zbl 0119.07801
[006] [7] H. Osborn, Les lois de conservation, Ann. Inst. Fourier (Grenoble) 14 (1964), 71-82. | Zbl 0126.10904
[007] [8] F. J. Turiel, Structures bihamiltoniennes sur le fibré cotangent, C. R. Acad. Sci. Paris Sér. I 308 (1992), 1085-1088. | Zbl 0767.57013
[008] [9] F. J. Turiel, Classification locale simultanée de deux formes symplectiques compatibles, Manuscripta Math. 82 (1994), 349-362.