Extension of solutions for Monge-Ampère equations of hyperbolic type
Tsuji, Mikio
Banach Center Publications, Tome 37 (1996), p. 437-447 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262541
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p437bwm,
     author = {Tsuji, Mikio},
     title = {Extension of solutions for Monge-Amp\`ere equations of hyperbolic type},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {437-447},
     zbl = {0852.35004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p437bwm}
}
Tsuji, Mikio. Extension of solutions for Monge-Ampère equations of hyperbolic type. Banach Center Publications, Tome 37 (1996) pp. 437-447. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p437bwm/

[000] [1] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience, New York, 1962. | Zbl 0099.29504

[001] [2] G. Darboux, Leçons sur la théorie générale des surfaces, tome 3, Gauthier-Villars, Paris, 1894.

[002] [3] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre, tome 1, Hermann, Paris, 1932.

[003] [4] E. Goursat, Cours d'analyse mathématique, tome 3, Gauthier-Villars, Paris, 1927. | Zbl 53.0180.05

[004] [5] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932. | Zbl 58.0519.16

[005] [6] S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, in: Adv. Stud. Pure Math. 22, 1993, 89-100. | Zbl 0837.35090

[006] [7] S. Izumiya and G. T. Kossioris, Semi-local classification of geometric singularities for Hamilton-Jacobi equations, preprint. | Zbl 0837.35091

[007] [8] H. Lewy, Über das Anfangswertproblem bei einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen, Math. Ann. 98 (1928), 179-191. | Zbl 53.0473.15

[008] [9] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc. 37 (1934), 417-434; 41 (1937), 365-374. | Zbl 61.0513.02

[009] [10] V. V. Lychagin, Contact geometry and non-linear second order differential equations, Russian Math. Surveys 34 (1979), 149-180. | Zbl 0427.58002

[010] [11] T. Morimoto, La géométrie des équations de Monge-Ampère, C. R. Acad. Sci. Paris 289 (1979), 25-28. | Zbl 0425.35023

[011] [12] S. Nakane, Formation of singularities for Hamilton-Jacobi equations in several space variables, J. Math. Soc. Japan 43 (1991), 89-100. | Zbl 0743.35043

[012] [13] S. Nakane, Formation of shocks for a single conservation law, SIAM J. Math. Anal. 19 (1988), 1391-1408. | Zbl 0681.35057

[013] [14] A. Pliś, Caharacteristic of nonlinear partial differential equations, Bull. Acad. Polon. Sci. Cl. III 2 (1954), 419-422.

[014] [15] M. Tsuji, Formation of singularities for Hamilton-Jacobi equation II, J. Math. Kyoto Univ. 26 (1986), 299-308. | Zbl 0655.35009

[015] [16] M. Tsuji, Prolongation of classical solutions and singularities of generalized solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 505-523. | Zbl 0722.35025

[016] [17] H. Whitney, On singularities of mappings of Euclidean spaces I, Ann. of Math. 62 (1955), 374-410. | Zbl 0068.37101