Stationary p-harmonic maps into spheres
Strzelecki, Paweł
Banach Center Publications, Tome 37 (1996), p. 383-393 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262857
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p383bwm,
     author = {Strzelecki, Pawe\l },
     title = {Stationary p-harmonic maps into spheres},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {383-393},
     zbl = {0865.35022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p383bwm}
}
Strzelecki, Paweł. Stationary p-harmonic maps into spheres. Banach Center Publications, Tome 37 (1996) pp. 383-393. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p383bwm/

[000] [1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1992), 417-443. | Zbl 0792.53039

[001] [2] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, Cahiers Mathématiques de la Décision, preprint no. 9123, CEREMADE. | Zbl 0864.42009

[002] [3] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris 309 (1989), 945-949. | Zbl 0684.46044

[003] [4] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113. | Zbl 0754.58007

[004] [5] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 585-587.

[005] [6] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[006] [7] M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math., to appear. | Zbl 0794.58012

[007] [8] M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis 9 (1989), 127-143. | Zbl 0683.49014

[008] [9] M. Fuchs, p-harmonic obstacle problems. I: Partial regularity theory, Ann. Mat. Pura Appl. 156 (1990), 127-158. | Zbl 0715.49003

[009] [10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Elsevier, 1985.

[010] [11] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. | Zbl 0516.49003

[011] [12] R. Hardt and F. H. Lin, Mappings minimizing the Lp-norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555-588. | Zbl 0646.49007

[012] [13] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris 311 (1990), 519-524. | Zbl 0728.35014

[013] [14] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, ibid. 312 (1991), 591-596. | Zbl 0728.35015

[014] [15] F. Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), 203-218. | Zbl 0718.58019

[015] [16] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 346-367. | Zbl 0641.58012

[016] [17] S. Müller, Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math. 412 (1990), 20-34.

[017] [18] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), 131-166. | Zbl 0521.58024

[018] [19] T. Rivière, Everywhere discontinuous harmonic maps from the dimension 3 into spheres, Centre des Mathématiques et Leurs Applications, ENS-Cachan, preprint no. 9302. | Zbl 0898.58011

[019] [20] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335. | Zbl 0521.58021

[020] [21] P. Strzelecki, Regularity of p-harmonic maps from the p-dimensional ball into a sphere, Manuscripta Math., to appear. | Zbl 0797.58019

[021] [22] H. Takeuchi, Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps, J. Math. Soc. Japan 46 (1994), 217-234. | Zbl 0817.58011

[022] [23] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. | Zbl 0488.35017

[023] [24] A. Torchinsky, Real-Variable Methods in Analysis, Academic Press, 1986.

[024] [25] T. Toro and Ch. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1995), 87-114. | Zbl 0826.58014

[025] [26] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. | Zbl 0372.35030

[026] [27] N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222.

[027] [28] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, 1989.