@article{bwmeta1.element.bwnjournal-article-bcpv33z1p309bwm, author = {Quittner, Pavol}, title = {Global existence of solutions of parabolic problems with nonlinear boundary conditions}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {309-314}, zbl = {0865.35067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p309bwm} }
Quittner, Pavol. Global existence of solutions of parabolic problems with nonlinear boundary conditions. Banach Center Publications, Tome 37 (1996) pp. 309-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p309bwm/
[000] [1] H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations 72 (1988), 201-269. | Zbl 0658.34011
[001] [2] H. Amann, Global existence for semilinear parabolic systems, J. Reine Angew. Math. 360 (1985), 47-83. | Zbl 0564.35060
[002] [3] M. Fila and P. Quittner, The blow-up rate for the heat equation with a non-linear boundary condition, Math. Methods Appl. Sci. 14 (1991), 197-205. | Zbl 0735.35014
[003] [4] J. Filo, Uniform bounds for solutions of a degenerate diffusion equation with nonlinear boundary conditions, Comment. Math. Univ. Carolin. 30 (1989), 485-495. | Zbl 0702.35142