Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type
Lieberman, Gary
Banach Center Publications, Tome 37 (1996), p. 199-221 / Harvested from The Polish Digital Mathematics Library
Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:262797
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p199bwm,
     author = {Lieberman, Gary},
     title = {Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type},
     journal = {Banach Center Publications},
     volume = {37},
     year = {1996},
     pages = {199-221},
     zbl = {1075.35531},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p199bwm}
}
Lieberman, Gary. Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type. Banach Center Publications, Tome 37 (1996) pp. 199-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p199bwm/

[000] [1] M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions, Acta Math. Univ. Comenian. 60 (1991), 35-103. | Zbl 0743.35038

[001] [2] T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75. | Zbl 0216.15702

[002] [3] M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comm. Math. Univ. Carolin. 30 (1989), 479-484. | Zbl 0702.35141

[003] [4] M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations 98 (1992), 226-240. | Zbl 0764.35010

[004] [5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin 1983. | Zbl 0562.35001

[005] [6] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985. | Zbl 0695.35060

[006] [7] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.

[007] [8] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361. | Zbl 0742.35028

[008] [9] G. M. Lieberman, Study of global solutions of parabolic equations via a priori estimates I. Equations with principal elliptic part equal to the Laplacian, Math. Methods Appl. Sci. 16 (1993), 457-474. | Zbl 0797.35093

[009] [10] G. M. Lieberman, Study of global solutions of parabolic equations via a priori estimates II. Porous medium equations, Comm. Appl. Nonlinear Anal. 1 (1994), 93-115. | Zbl 0908.35067

[010] [11] G. M. Lieberman, Maximum estimates for solutions of degenerate parabolic equations in divergence form, J. Differential Equations 113 (1994), 543-571. | Zbl 0818.35052

[011] [12] H. Matano, Asymptotic behavior of solutions of semilinear heat equations on S1, in: Nonlinear Diffusion Equations and Their Equilibrium States, W.-M. Ni, L. A. Peletier and J. Serrin (eds.), Springer, 1988, 139-162.

[012] [13] L. M. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), 821-855. | Zbl 0346.35016

[013] [14] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. | Zbl 0163.36402

[014] [15] N. S. Trudinger, An imbedding theorem for H0(G,Ω) spaces, Studia Math. 50 (1974), 17-30.

[015] [16] T. J. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differentsial'nye Uravneniya 4 (1968), 34-45; English transl.: Differential Equations 4 (1968), 17-22.