As shown by V. Vassilyev [V], singularities of arbitrary Lagrangian mappings of three-folds form no integral characteristic class. We show, nevertheless, that in the pseudooptical case the number of singularities counted with proper signs forms an invariant. We give a topological interpretation of this invariant, and its applications. The results of the paper may be considered as a 3-dimensional generalization of the results due to V. I. Arnold [A].
@article{bwmeta1.element.bwnjournal-article-bcpv33z1p161bwm, author = {Kazarian, Maxim \`E.}, title = {Umbilical characteristic number of Lagrangian mappings of 3-dimensional pseudooptical manifolds}, journal = {Banach Center Publications}, volume = {37}, year = {1996}, pages = {161-170}, zbl = {0881.57030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p161bwm} }
Kazarian, Maxim È. Umbilical characteristic number of Lagrangian mappings of 3-dimensional pseudooptical manifolds. Banach Center Publications, Tome 37 (1996) pp. 161-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv33z1p161bwm/
[000] [A] V. I. Arnold, Sur les propriétés topologiques des projections lagrangiennes en géométrie symplectique des caustiques, Cahiers Math. Décision, CEREMADE, 9320, 14/6/93, 9 pp.
[001] [AG] V. I. Arnold and A. V. Givental, Symplectic Geometry, in: Encyclopedia of Math. Sci. Dynamical Systems 4, Springer, 1990, 4-136.
[002] [Ch] Yu. V. Chekanov, Caustics in geometrical optics, Funct. Anal. Appl. 20 (1986), 223-226. | Zbl 0622.58004
[003] [D] G. Darboux, Leçons sur la théorie générale des surfaces, Vol. 4, Gauthier-Villars, Paris, 1896. | Zbl 27.0497.01
[004] [F] D. B. Fuchs, Maslov-Arnol'd characteristic classes, Soviet Math. Dokl. 9 (1968), 96-99. | Zbl 0175.20304
[005] [P1] I. R. Porteous, The normal singularities of surfaces in , in: Proc. Sympos. Pure Math. 40, Part 2, Amer. Math. Soc., 1983, 379-393.
[006] [P2] I. R. Porteous, Geometric Differentiation, Cambridge University Press, 1994.
[007] [V] V. A. Vassilyev, Lagrange and Legendre Characteristic Classes, Gordon and Breach, 1988.
[008] [Z] V. M. Zakalyukin, Rearrangements of fronts and caustics depending on a parameter, and versality of maps, in: Current Problems of Math. 22, VINITI, 1983, 56-93.